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Technical Section 

Technical Objectives 

Computational modeling and simulations involving STEM (science, technology, engineering and 
mathematics) disciplines are highly interdisciplinary growing out of complex, challenging, multi- 
domain, multi-component and data intensive application needs of several disciplines and the 
need for high end computing hardware and software, algorithms and information driven 
technologies. The research efforts in this project focused on the synergistic coupling of: 

A. Research relevant to Navy/DOD in computational sciences 

B. Computational Simulation, Visualization and Enabling Technologies 

C. Student support towards development of next generation workforce 

D. Associated support of computational and visualization hardware/software needs 

A. Research Relevant to Navy/DOD in Computational Sciences 

The Navy/DOD relevant research activities emphasize on the computational science research 
with a focus on a paradigm for computer assisted material design and validation for material 
systems that include metals, polymers and composites. 

New material design developments and interface between different constituent materials can be 
understood by studying the fimdamental interactions that exist across the fimctional material 
element constituents. Such ftmdamental understanding can be enabled by materials design 
through modeling and simulation of materials and material interfaces envisioned in multi- 
functional and hybrid material systems. The active, optical, biological, structural, and/or 
electronic simulations of different materials are required to achieve successful scientific 
breakthroughs in the development and design of new class of material systems. These modeling, 
simulation and visualization techniques are critical for the specific understanding of the interface 
and interactions between the organic and inorganic material systems, in particular the complex 
multi-length and temporal scale material and multi-species interactions that will enable and 
optimize the development, processing, fabrication and scaling of the heterogeneous material 
systems. Physical, computational modeling and simulations are still lagging for such 
heterogeneous, multi-scale (length and time), multi-component interface material systems and 
formed the research focus of this project. 



The proposed relevant research activities under this umbrella are defined and categorized under 
these focus areas. They are: 

A-1: Computational Multi-Scale Science and Mechanics for Hybrid Light Weight Polymeric 
Composite Structures 

A-2: Computational Multi-scale Deformation Behavior in Metallic Material Systems 

B. Computational Simulation. Visualization and Enabline Technologies 

Several enabling technologies, their research development and availability are critical to the 
success of the research and education activities in computational modeling and high performance 
computing in advanced materials processing and synthesis and design. Toward this end, the 
proposed efforts involve the development of an expanded computational simulation and enabling 
technology and the research in the associated enabling technology areas including applications of 
new high performance computing paradigms for physics based modeling and simulations. 

C. Educational Activity and Student Support 

North Carolina A & T State University (NCAT) is a land grant, historically black college and 
university (HBCU) with the graduate Masters Computational Science and Engineering (CSE) 
program established in 2005 and Ph.D. program in CSE established in 2010. NCAT has also now 
established the graduate programs (MS and Ph.D.) in nanoengineering. Research initiated and 
established through the ONR award provided the foundation for this establishment of the new 
nanoengineering graduate program and paved the way for NCAT to lead such efforts in this 
arena. NCAT is the first HBCU with a graduate master's and doctoral program in 
nanoengineering. The educational activities of the proposed efforts were instrumental in 
supporting the educational infrastructure requirements of the current Master's and Ph.D. 
programs in nanoengineering and CSE. The educational activity funds of the project provided 
financial fellowships and assistantships to the Ph.D. and Master's students in the area of 
computational mechanics, nanomechanics, material sciences, and enabling technologies. This is 
enabling the education and training of future workforce (esp. underrepresented minorities) in 
these critical technology areas. In addition, North Carolina A&T State University has initiated a 
new graduate program in Nanoengineering with computational nanoengineering as one of the 
focus areas. The research areas related to computational nanomechanics, multi-scale modeling 
and nanoengineered materials leveraged and enabled through the ONR funding benefited the 
students of this program and leveraged additional opportunities firom this new graduate program. 



D. Computational and Visualization Hardware / Software 

Computational and visualization hardware/software resources are critical components of 
computational modeling research. The project funding was instrumental in supporting the 
associated software and system upgrades benefiting the research and educational needs of the 

students, faculty and the research focus. In addition, the project funding was instrumental in the 
award of a NSF major research instrumentation award to acquire a multi-processor SUN Blade 
system that is currently under installation. ONR project funds in part were also used to support 
the acquisition of a new multi-processor Cray XC-30 system that is now providing the hardware 
needs for computational nanoengineering at North Carolina A&T State University. 



Techmcal Approach^ _ ^  IMHBHppI-.. ^ J 

All the research and educational developments and investigations performed under this grant 
award targeted towards advancing the state of the art in the computational science and modeling 
approaches for the class of problems and applications with multiple length and time scales and 
that would require bridging across the different scales. The exploratory research developments 
provided and enhanced the understanding of computational modeling and simulation 
technologies towards a material by design paradigm for naval material developments, systems, 
and applications. 

Based on the above research, education, technology focus, specific research investigations were 
initiated and conducted during the project funding period. Brief details of these research 
investigations during the project period and technical approaches are presented here. Further 
technical discussions are reported in the section on "Detailed Technical Discussions". All these 
research investigations have resulted and are resulting in peer-reviewed publications, post- 
doctoral research training, graduate student education and graduation through thesis and doctoral 
dissertations associated with these research investigations. 

A-1: Computational material science and mechanics of hybrid and light weight polymeric 
composite structures 

Research activities and the associated technical approach in the area A-1 conducted during the 
project period focused on: 

• Molecular dynamics modeling of carbon nano tube (CNT) - epoxy composites. 

• Modeling and experimental investigation on the effect of Intelaminar Nanofiber layers on 
the deformation behavior. 

A-1-1: Atomistic Modeling in Polvmer Nanocomposite Systems - Applications to Mechanics of 
Multi-Scale Materials 

Hybrid and nano composites are formed with material phases at varying length scales, and 
include nano material constituents. The behavior of these composites is influenced by the 
material interactions during processing, and by the damages/defects in the associated constituent 
nano materials. Low length scale modeling based on the atomistic, molecular structures provides 
an insight into the molecular level interactions that exist, and their influence on the associated 
composite properties. Such modeling can also provide predictive properties and an understanding 



of the atomistic level behaviour. The project efforts focused on the role of atomistic modelling 
and simulations vv'ith a focus on applications to a hierarchical nanoengineered composite material 
systems consisting of carbon nanotube epoxy nanocomposites. 

A-1-2: Modeling and Experimental Investigation on the Effect of Interlaminar Nanofiber Layers 
on the Delamination Behavior in an Epoxv Fiber Glass Composite 

This work focused on the addition of electrospun nano fiber interface layers between the 
traditional composite laminates and its effect on the delamination characteristics in an epoxy- 
fiber glass composite system. Electrospun glass nano fiber layers formed with TEOS (Tetra 
Ethyl Ortho Silicate) sol gel system are used as interface layers. Delamination characteristics of 
the composite with and without electrospun fiber interface layers are studied using double 
cantilever beam (DCB) tests. The experimental characterization showed that addition of nano 
fiber layers provided consistent improvements in the Mode-I fracture toughness values. Finite 
element modeling of the crack growth and delamination failure with and without the nano fiber 
layers are studied and compared. The Mode-I firacture toughness values from the finite element 
modeling are compared with the experimental data. 

A-2 Computational multi-scale deformation behavior in metallic material systems 

Research activities and technical approach in this area during the project period focused on the 
deformation behavior of nanoscale material systems with applications to tensile, flexural, and 
crack propagation. 

A-2-1 Molecular Dynamics Modeling of tensile, flexural and crack propagation in metallic 
systems 

Nanomechanics is an evolving field that investigates the mechanical properties, deformation 
behavior and characteristics of nanoscale structures. Due to the smaller lengths at the nano level, 
principles of mechanics are employed in conjunction with interatomic potentials, molecular 
forces and molecular dynamics. This work focused on the tensile and flexural deformation of 
Nickel nanowires; and dynamic crack propagation in nanoscale Nickel and Nickel-Aluminum 
bimetal interface. 

A-2-1 Mechanical Behavior of Nanoscale Metallic Composites - Dynamic Crack Propagation in 
Ni-Al Bilayer Composite 

Nanoscale multilayer metallic composites (NMMCs) contain significantly high volume fraction 
of interfaces and exhibit strengths much higher than that of bulk materials composing the 
structures. This strengthening has been attributed to the presence of interfaces between materials 



that differ in properties such as elastic modulus, lattice parameters, slip plane orientations and act 
as barriers to propagating dislocations. This work focused on the influence of semi-coherent Ni 
(nickel) - Al (aluminum) interface on Mode-I crack propagation in nanoscale Ni-Al bilayer 
composite under tensile and cyclic loading conditions analyzed through computational modeling. 

B: Computational enabling technologies 

The specific research activity and technical approach in area B are: 

B-1   Multi-Scale  Simulation  Investigations  of Nanofiber Resin  Interactions using  Lattice 
Boltzmann Equations and Finite Volume Methods 

Multi-scale modeling approaches are required to accurately capture the disparate length scale 
effects in various engineering problems. Preliminary work in this area focused on the coupled 
Lattice Botlzmann and Navier Stokes modeling for flow problems in collaboration with 
University of Alabama at Birmingham. Further developments in these concurrent coupled 
modeling developments are needed. The present efforts are geared towards applications in 
understanding the nano fiber, nano tube resin flow interactions in composites material 
processing. Due the low length scale size of nano fibers in comparison to the resin flow domain, 
low length scale methods in the vicinity of the nanofiber flow region and correlation with the 
macroscopic flow field. The present research investigations and modeling investigations 
comparing the Lattice Boltzmaim and Navier Stokes approaches that are in progress are 
presented. 

B-2 Physics Based Modeling and Simulation on Graphical Processing Units (GPUs) - Porous 
Media Flow in Liquid Composite Molding 

High performance computing architectures are evolving over the years with the Graphical 
Processing Units (GPU) are providing superior performances for computationally intensive 
problems. Results from the continued investigations are presented. 

B-3 Probabilistic Analysis of Property Uncertainties using Resin Infiision Flow Modeling and 
Simulations 

Physics based flow modeling provides an effective way to simulate the resin infiision process in 
liquid composite molding processes for polymer composite structures. These are effective to 
provide optimal injection time and locations for given process parameters of resin viscosity and 
preform permeability prior to resin gelation. However, there could be significant variations in 
these two parameters during actual manufacturing due to differences in the resin batches, mixes, 



temperature, ambient conditions for viscosity; in the preform rolls, compaction, etc., for 
permeability. Research to understand the influence of uncertainties in these parameters on the 
resin infusion time was initiated via a probabilistic modeling methodology using resin flow 
modeling and statistical analysis. 

All these research investigations have resulted and are resulting in peer-reviewed publications, 
post-doctoral research training, graduate student education, continuing graduate work and 
graduation. 

10 



Technical Accomplishm 

New material design developments require a fundamental understanding through computational 
modeling of materials, interfaces and associated mechanics. Project efforts demonstrated the 
effectiveness of computational modeling in material processing, synthesis and design via: 
Molecular Dynamics modeling (MD) of carbon vacancy defects as a potential cause to reduce 
modulus of SWNCT, and SWCNT-epoxy composites; Molecular Dynamics modeling of 
deformation and Ni-Al bimetal interface for insight on nanoscale fracture; Lattice Boltzmaim and 
Finite Volume Method for coupled meso- macro- flow analysis; Graphical processing unit 
(GPU) as a computing platform for composite process flow modeling; Non-deterministic 
probabilistic based methods to understand the influence of processing parameters based on 
deterministic models. 

A summary of the research and technical accomplishments and results obtained during the 
project period in the various research investigations are presented next. 

A-1: Computational material science and mechanics of hybrid and light weight 
polymeric composite structures 

Research activities and the associated technical approach in the area A-1 conducted during the 
project period focused on: 

• Molecular dynamics modeling of carbon nano tube (CNT) - epoxy composites. 

• Modeling and experimental investigation on the effect of Intelaminar Nanofiber layers on 
the deformation behavior. 

A-1-1: Atomistic Modeling in Polymer Nanocomposite Systems - Applications 
to Mechanics of Multi-Scale Materials 

Computational techniques such as molecular dynamics (MD) simulations have emerged as an 
alternative to the traditional experimental and theoretical methods of estimating mechanical 
properties of the Epoxy - Carbon Nanotube composite systems. However, differences have been 
observed between results obtained from experiments and those obtained from MD simulations 
with the experimental results being lower. The effect of carbon vacancy defects in the single wall 
carbon natotube (SWCNT) on the Young's modulus of the nano tubes as well as their EPON 862- 

11 



DETDA-SWCNT composite evaluated through molecular dynamics simulations performed with 
Accelrys and Materials Studio were focused in the present work. Since their discovery, Carbon 
nanotubes (CNT) have gained significant attention because of their superior chemical, 
mechanical and thermo-physical properties. Inclusion of CNTs in polymer matrices have shown 
significant improvement of properties compared with the properties of the parent polymers, 
however, defects in these CNTs have also been observed to have detrimental effects on the 
mechanical properties of the composites. 

A-1-2: Modeling and Experimental Investigation on the Effect of Interlaminar 
Nanofiber Layers on the Delamination Behavior in an Epoxy Fiber Glass 
Composite 

Delamination is one of the important failure mechanisms in composite materials. Several 
methods such as stitching of fiber plies, self-healing polymer materials, and interface 
reinforcements have been developed, investigated and employed over the years to improve the 
delamination characteristics. The usage of interface material layers (in particular, sub-micron and 
nano level materials) has also been recently investigated. This study focused on the addition of 
electrospun nano fiber interface layers between the traditional composite laminates and its effect 
on the delamination characteristics in an epoxy-fiber glass composite system. Electrospun glass 
nano fiber layers formed with TEOS (Tetra Ethyl Ortho Silicate) sol gel system are used as 
interface layers. Delamination characteristics of the composite with and without electrospun fiber 
interface layers are studied using double cantilever beam (DCB) tests. The experimental 
characterization showed that addition of nano fiber layers provided consistent improvements in 
the Mode-I fracture toughness values. Finite element modeling of the crack growth and 
delamination failure with and without the nano fiber layers are studied and compared. The 
Mode-I fracture toughness values from the finite element modeling are compared with the 
experimental data. 

A-2 Computational multi-scale deformation behavior in metallic material systems 

Research activities and technical approach in this area during the project period focused on the 
deformation behavior of nanoscale material systems with applications to tensile, flexural, and 
crack propagation. 

12 



A-2-1 Molecular Dynamics Modeling of tensile, flexural and crack propagation 
in metallic systems 

Nanomechanics is an evolving field that investigates the mechanical properties, deformation 
behavior and characteristics of nanoscale structures. Due to the smaller lengths at the nano level, 
principles of mechanics are employed in conjunction with interatomic potentials, molecular 
forces and molecular dynamics. This work focused on the tensile and flexural deformation of 
Nickel nanowires; and dynamic crack propagation in nanoscale Nickel and Nickel-Aluminum 
bimetal interface. 

The tensile deformation behavior analysis indicates that Young's Modulus was independent of 
the cross sectional area of the nanowire, and the strain rate. The flexural deformation and 
vibration behavior indicates that the frequency of the vibrations as computed from time 
displacement deformation behavior of the molecular configurations of the Nickel nanowire 
beams are independent of the magnitude of external loading, and is consistent with the classical 
beam theory. 

The dynamic crack propagation behavior in a Nickel single crystal and a Nickel-Aluminum 
bimetal interface are investigated. The propagation mechanisms and fracture behavior in Ni are 
compared with such behavior in Ni-Al nanoscale bimetallic layer that initiates and propagates 
from Ni towards the Ni-Al bimetal interface. Our results for Ni show an initial brittle crack 
propagation followed by a roughening of the crack surfaces at one-third of the Rayleigh wave 
speed. In Ni-Al, the crack surfaces initially grow brittle. Two regimes of crack propagation 
velocities were observed in this case with crack getting decelerated as it nears the interface. 
Further dynamic analysis of the crack propagation indicated a cease in the crack propagation in 
Ni due to a brittle to ductile transition. In Ni-Al bimetal interface system, as the crack approaches 
the interface, a process zone representing local disorder at the crack tip was observed to start 
growing and interacting with interfacial defects that eventually results in a blunting of the crack 
tip. 

A-2-2 Mechanical Behavior of Nanoscale Metallic Composites - Dynamic Crack 
Propagation in Ni-Al Bilayer Composite 

Nanoscale multilayer metallic composites (NMMCs) contain significantly high volume fraction 
of interfaces and exhibit strengths much higher than that of bulk materials composing the 
structures. This strengthening has been attributed to the presence of interfaces between materials 
that differ in properties such as elastic modulus, lattice parameters, slip plane orientations and act 
as barriers to propagating dislocations. This paper presents a review of two major factors that 
influence     the     properties     and     behavior    of    the    NMMCs:     Interface     structure, 

13 



Strengthening/Deformation mechanisms. The influence of semi-coherent Ni (nickel) - Al 
(aluminum) interface on Mode-I crack propagation in nanoscale Ni-Al bilayer composite under 
tensile and cyclic loading conditions analyzed through computational modeling is discussed. 
Results for nanoscale Ni-Al bilayer composite showed initial brittle crack propagation with 
planar cleavage of atoms followed by crack surfaces getting roughened when crack propagation 
speed is about one-third of Rayleigh wave speed. In case of Mode-I tensile cyclic loading, crack 
was found to propagate either by fatigue cleavage of the atoms or by void nucleation in the 
regions near the crack tip, depending on the value of maximum strain applied. In Ni-Al bilayer 
composite studied, as crack approached the interface, dislocations start emanating from the 
interfacial layer. The creation of voids was found to slow down crack growth in both the Ni and 
Ni-Al at higher maximum applied strain during cyclic loading. Plastic deformation was found to 
dominate crack propagation during tensile loading that resulted in a slower crack growth than 
cyclic loading. In all cases, presence of semi-coherent interface in the nanoscale Ni-Al bilayer 
composite was found to prohibit crack from propagating beyond the interface. 

B-1 Multi-Scale Simulation Investigations of Nanofiber Resin Interactions using 
Lattice Boltzmann Equations and Finite Volume Methods 

The orientation/distribution of carbon nanotube (CNT) and other nanofibers in polymer matrix, 
one of main factors in manufacturing high-performance multifunctional composites, is an 
important aspect to be considered during the development of new CNT composites with 
enhanced mechanical, electrical and thermal properties. However, the disparate length scales 
involved and mechanical properties of nanotube and rheological properties of polymer matrix 
around CNT and nanofibers hinder researchers from elucidating the problem via computational 
modeling. Understanding this problem requires a multi-scale computational approach and the 
associated enabling technologies. Different computational solvers for each of these scales, 
bridging techniques between the solvers, and a representative model of a carbon 
nanotube/nanofiber are needed for the simulation of this class of multi-scale and multi- 
disciplinary problems. The activities, accomplishments and results during the past year focused 
on the 1) the coupling of a macro-scale solver, HYB3D, and a meso-scale solver. Regularized 
Lattice Boltzmann (LB) equation solver, for computational fluid dynamics problems. 

B-2 Physics Based Modeling and Simulation on Graphical Processing Units 
(GPUs) - Porous Media Flow in Liquid Composite Molding 

The present year efforts examined the performance of graphics hardware when used as a co- 
processor within the context of a real-world application. The real-world application is Resin 
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Flow Infusion using the Finite Element Method (FEM) as provided by pre-existing Liquid 
Composite Molding (LCM) software. As illustrated in this study, the Graphics Processing Unit 
(GPU) used as a co-processor provides a definite boost in performance. However, the inherent 
differences in the GPU and CPU paradigms necessitate a different software structure. 

B-3 Probabilistic Analysis of Property Uncertainties using Resin Infusion Flow 
Modeling and Simulations 

Physics based flow modeling provides an effective way to simulate the resin infiision process in 
liquid composite molding processes for polymer composite structures. These are effective to 
provide optimal injection time and locations for given process parameters of resin viscosity and 
preform permeability prior to resin gelation. However, there could be significant variations in 
these two parameters during actual manufacturing due to differences in the resin batches, mixes, 
temperature, ambient conditions for viscosity; in the preform rolls, compaction, etc., for 
permeability. Research to understand the influence of uncertainties in these parameters on the 
resin infiision time was initiated via a probabilistic modeling methodology using resin flow 
modeling and statistical analysis. 

In addition to the research progress, the present project efforts in the establishment of the MS 
and Ph.D. program in nanoengineering and in developing the computational nanoengineering 
focus areas. The project initiatives were instrumental in providing the leverage for new research 
projects in the areas of multi-scale modeling of cementitious materials, high performance 
computational modeling of bio-nano interfaces. These would not have been possible without the 
enabling support provided by this research funding. The project efforts are benefiting the 
graduate student research education and training for the students in CSE and the nanoengineering 
programs. Several of these students participated in the research activities for the past year and 
continue to participate in the research activities. The research areas related to computational 
nanomechanics, multi-scale modeling and nanoengineered materials leveraged and enabled 
through the present funding is benefiting the students of this program and in facilitating new 
research opportunities in the computational nanoengineering, and attracting qualified minorities 
to the research areas of computational nanoengineering. 
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Detailed Technical Report 

Detailed technical report of the methodology, results and discussions are presented next. Technical 
discussions are organized under the same categories and headings as listed in the "Technical Approach" 
section. In addition, the accomplishments from the educational activity and student support and 
computational hardware/software are also presented. 

A-1: Computational material science and mechanics of hybrid and light weight 
polymeric composite structures 

A-1-1: Atomistic Modeling in Polymer Nanocomposite Systems - Applications 
to Mechanics of Multi-Scale Materials 

Computational Study of the Effect of Carbon Vacancy Defects on the Young's Modulus of 
(6,6) Single Wail Carbon Nanotube 

Authors: E. Fefey, R. Mohan, A. Kelkar, North Carolina A&T State University 

Published Journal Article: Materials Science and Engineering: B, Vol. 176, Issue 9, Pages 693- 

772, 2077fdoi;10.1016/j.mseb.2011.02.019) 

Abstract 

Computational techniques such as molecular dynamics (MD) simulations have emerged as an 
alternative to the traditional experimental and theoretical methods of estimating mechanical 
properties of single wall carbon nanotubes (SWCNTs) and polymer nanocomposites containing 
SWCNTs. Most MD simulations are based on a perfect molecular material structure of the 
SWCNT. The presence of vacancy defects in SWCNTs could lead to deviations from this perfect 
structure thus affecting the predicted properties. The present study investigated the effect of 
carbon vacancy defects in the molecular structure of SWCNT on the Young's modulus of the 
SWCNT using MD simulations performed via Accelrys and Materials Studio. The effect of the 
position of the defects in the nanotube ring and the effect of the number of defects on the 
Young's modulus are studied. The studies indicate that for an enclosed defect with the same 
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shape in a SWCNT structure, its position did not cause any change in the Young's modulus. 
However, as the number of defects increased, the predicted Young's modulus was found to 
decrease. For a 10 ring (6, 6) SWCNT, six vacancy defects (corresponding to a defect percentage 
of 2.5%) reduced the Young's modulus by 13.7%. These results indicate that presence of carbon 
vacancy defects are one potential cause for the reduction and lower Young's modulus of 
SWCNT, and subsequently lower Young's Modulus obtained experimentally in SWCNT 
dispersed epoxy-SWCNT nanocomposites cited in the literature. 

1. Introduction 

Since their discovery in 1991 [1], single wall carbon nanotubes (SWCNTs) have gained 
significant attention because of their superior chemical, mechanical and thermo-physical 
properties. For example, in the field of polymer nanocomposites, inclusion of SWCNTs into 
polymer matrices have been reported to result in significant improvement of properties compared 
to the properties of the parent polymers [2, 3]. The mechanical properties of SWCNTs and that 
of polymer nanocomposites containing SWCNTs have been studied through theoretical, 
experimental and computational analysis [4-7]. Results reported in the literature have indicated 
that mechanical properties obtained from experiments tend to be lower than those obtained from 
the computational analysis [8]. Several reasons have been assigned for this disparity including 
the fact that the experimental macroscopic coupons have SWCNTs dispersed in various 
orientations, while the computational models usually have the SWCNTs uni-directionally 
aligned. Another cause for this disparity is the fact that experimental processes could introduce 
defects into the SWCNTs, while computational models are based on a perfect SWCNT 
molecular material structure. Carbon vacancy defects in the molecular structure have been 
known to cause changes in the properties of CNTs [9-12]. Chemically, in some cases, these 
defects have been reported to enhance the affinity of the CNTs at the defective site making them 
most suitable as Platinum carrier electrodes in fuel cells [13]. However, these defects have been 
shown to have detrimental effects on their mechanical properties [9-11]. 

The present study investigates the effect of carbon vacancy defects on the Young's modulus of 
SWCNTs through Molecular Dynamics (MD) simulations. MD simulations provide in detail the 
dynamic individual particle motions and structure developments as a function of time [14] and 
therefore serve as a great tool to study the properties of a material system. The CNT investigated 
in this work is the (6, 6) single wall carbon nanotube (SWCNT). 
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2. Creation of the Atomistic Model Configurations 

2.1 Creation and Simulation of Pure SWCNT Atomistic Model Configuration 

All molecular models were created in Materials Studio and molecular modeling analysis 
simulations were conducted using Discover module by Accelrys Inc. A unit cell of the (6, 6) 
SWCNT was created in Materials Studio followed by the generation of a super cell build with 10 
SWCNT unit cells. The resulting carbon nanotube had a length of 23.4 A, diameter of 8.14 A, 
and a bond length of 1.42 A. Figure 1 shows the unit cell and super cell generated and modeled 
with Materials Studio. The potential energy of the models is characterized by the COMPASS 
force field [15] with the non-bond energies characterized by the Vander Walls and Coulomb's 
interactions. 
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(a) (b) 

Figure 1: (a) Unit cell, (b) Supercell of the SWCNT 

All angles of the cell were made equal to 90 degrees to ensure a rectangular box. The super cell 
molecular structure was minimized to obtain the most stable energy configuration. A cascade of 
the steepest descent minimization method and the Fletcher-Reeves method were used for this 
minimization. A typical potential energy profile during the energy minimization is shown in 
Figure 2. 
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Figure 2: Potential energy profile during minimization of SWCNT 

The required initial density of the cell material configuration was obtained by varying the 
volume of the cell. This was done by varying the lattice dimensions of the cell. Density is 
calculated from the total atomic material mass of the constituents in a simulation cell divided by 
the volume of the cell. NPT statistical ensemble which keeps the number of molecules, pressure 
and temperature constant but allows the volume of the cell to vary was used. The density 
therefore changes over the duration of the MD simulation and the reported density is the 
averaged density over the duration of the simulation. 

As expected with a constant mass of the SWCNT defined by the super cell structure, as the 
volume was decreased, the density of the bounding cell increased and vice versa. However, it 
was observed that below certain cut-off dimensions of the bounding cell, energy minimization 
resulted in distortion of the nanotube structure. This made it impossible to obtain the targeted 
physical density of 1.9 g/cm^ (SWCNT physical density), since this resulted in distortion of the 
nanotube structure. The distorted SWCNT structures obtained after the fiill minimization 
convergence are not however representative of the physical configuration of the SWCNT. Figure 
3 shows examples of distorted SWCNT nanotube structures obtained after full energy 
minimization convergence. 
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Figure 3: Distorted SWCNT after minimization 

In order to avoid these unpliysical distortions seen during the energy minimization, mechanical 
property predictions for the Young's modulus was determined at several densities that had 
undistorted minimized structures. The predicted Young's Modulus values from these different 
densities were then extrapolated to obtain the Young's Modulus at the physical density of 1.9 
g/cm . MD simulation analyses were conducted at a temperature of 298 K and a pressure of 1 
atmosphere for 50 ps (50,000 fs) with a time step of 1 fs. All simulation analyses employed NPT 
ensemble with the Anderson temperature control method [16, 17] and the Berendsen pressure 
control method [15]. Trajectories were saved at every 5,000 steps resulting in 10 frames over the 
entire time duration of the simulation. These 10 molecular trajectory frames were used in the 
computational analysis for the predicted Young's modulus. Young's modulus as predicted and 

obtained from Accelerys analysis computations was calculated from the Lame constants ^ and 

^ as given by Equation 1. 

E = ju 
X + n 

(1) 

A 6 ^6 matrix of elastic constants generated by the Accelrys analysis computations was 
analyzed to obtain the modulus in various directional orientations. 

Table 1 lists the dimensions of the nanotubes used with "a", "b" and "c" being the dimensional 
length of the bounding cell in the "x", "y" and "z" axis respectively. 

The lattice parameters for the configuration SWCNT 1 represent the threshold below which 
further minimization of the cell resulted in an unphysical distortion of the nanotube as discussed 
earlier. 

20 



Table 1: Lattice parameters of SWCNT cell structures used to investigate the Young's Modulus 

Lattice 

parameters[A] SWCNTl 
SWCNT2 SWCNT3 SWCNT4 

11.483 12.5 13.5 14.5 

11.483 12.5 13.5 14.5 

25.5951 25.5951 25.5951 25.5951 

2.2    Creation and Simulation of Defective SWCNT Atomistic Models 

The defective single walled carbon nanotubes (DSWCNT) with vacancy defects were created in 
the same way as the pure SWCNT. The vacancy defects in the SWCNT structure were 
introduced by removing some carbon atoms in the "z" dimensional axis of the tube. As 
mentioned earlier in section 1, these vacancies of carbon atoms are sometimes advantageous 
from the chemical point of view, because the affinity of the structure is increased at these vacant 
sites. However, mechanically these defects make the structure weaker and results in a decrease of 
the mechanical properties. 

Two types of investigations were conducted on the effect of carbon vacancy defects on the 
predicted Young's Modulus of SWCNT. The first investigation is to determine the effect of the 
position of the carbon vacancy defect on the Young's modulus of the nanotube. This was 
modeled by moving the vacancy defect around the lattice length of the nanotube in the "z" 
dimension. The second investigation is to find the effect of the number of vacancy defects on the 
Young's modulus. The number of defects incorporated into the tube was altered. Young's 
modulus was therefore investigated for different number of defects in the tube. As with the pure 
SWCNT, the Young's modulus was determined at different densities and extrapolated to the 
required physical SWCNT density of 1.9 g/cm^ to avoid the unphysical distortions during energy 
minimization as discussed earlier. The lattice parameters used in the SWCNT model 
configurations with carbon vacancy defects were the same as in the pure case and are as listed in 
Table 1. A similar procedure as discussed earlier was employed for the creation of the molecular 
model with the carbon vacancy defects. A unit cell was created followed with a super cell with 
10 SWCNT units generated with all angles equal to 90 degrees. Vacancy defects in the SWCNT 
structure were formed by removing some carbon atoms from the rings. The structure with carbon 
vacancy defects was then minimized. The energy minimization was monitored to avoid cell 
dimension configurations that would lead to unphysical distortion of the SWCNT structures. MD 
simulation analyses were conducted at a temperature of 298 K for 50 ps (50,000 fs) with a time- 
step of 1 fs. 10 trajectories of the molecular configurations during the dynamic analysis were 
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saved and used for the analysis run to estimate the predicted Young's modulus of SWCNT with 
various vacancy defects. 

3      Results and Discussions 

The predicted Young's modulus from various MD simulations with the carbon vacancy defects 
are compared with those for a pure, non-defective SWCNT. The findings and inferences from the 
several simulation analyses are discussed next. 

3.1 Position of the Defect 

The carbon vacancy defect was moved along the "z" axis dimension of the SWCNT to 
investigate the effect of the position of the vacancy defect within the SWCNT molecular 
structure on the Young's modulus. Due to the symmetrical nature of the SWCNT, a carbon 
vacancy defect in the second ring would be equivalent to the carbon vacancy defect in the eighth 
ring. In the same regard, defects in the third and seventh ring are equivalent, so are defects in the 
fourth and sixth. For this reason, the defects were moved only from the second ring to the fifth 
ring. Any fiirther than this will just be duplication for the SWCNT length considered in the 
present study. The defect used in this work consisted of removing adjacent vertical carbon atoms 
in a particular ring as shown in Figure 4. 

Figure 4: SWCNT with two carbon atoms removed 

Removal of one carbon atom from an enclosed ring results in the breaking of three C-C bonds. 
The carbon atoms removed and the bonds broken are highlighted in Figure 4. Removal of two 
carbon atoms therefore results in the breaking of six C-C bonds. Carbon atoms were not removed 
from the first or the ninth rings because that would have resulted in the breaking of fewer C-C 
bonds since the first and ninth rings were the boundary rings, and will therefore not augur well 
for accurate comparisons. It must be noted however that the results are not expected to be the 
same if the carbon atoms were removed horizontally since this would result in a different shape 
of the defect. The movement of the carbon vacancy defect along the "z" dimension of the tube is 
schematically shown in Figure 5. 
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Table 2 shows the Young's modulus at different positions on the SWCNT for adjacent vertical 
carbon atoms removed and Table 3 shows the Young's modulus at different positions of the 
SWCN T for adjacent horizontal atoms removed. 

Table 2: Effect of the position of the defect on Young's Modulus (adjacent vertical atoms 
removed) 

Position of defect Young's Modulus [GPa] 

Second ring (Figure 5a) 704.4 

Third ring (Figure 5b) 704.2 

Fourth ring (Figure 5c) 704.2 

Fifth ring (Figure 5d) 704.1 
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Figure 5: Various positions of adjacent defects in the SWCNT: (a) Vertical defect in second 
ring, (b) Vertical defect in third ring, (c) Vertical defect in fourth ring, (d) Vertical 
defect in fifth ring, (e) Horizontal defect in the second and third rings, (f) Horizontal 
defects in the third and fourth rings, (g) Horizontal defects in the fourth and fifth rings 
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Table 3: Effect of the position of the defect on Young's Modulus (adjacent horizontal atoms 
 removed)  

Position of defect Young's Modulus [GPa] 

Second and third rings (Figure 5e) 735.4 

Third and fourth rings (Figure 51) 735.6 

Fourth and fifth rings (Figure 5g) 735.6 

From Table 2 and 3 it is clear that for a defect with the same shape, its position in the SWCNT 
had no effect on the Young's modulus. This can be attributed to the fact that, for the same shape 
and size of vacancy defect, regardless of its position, the same type of bonds are broken and 
therefore the weaknesses introduced are equivalent. The results were however different when the 
shape of the defect was changed and the number of defects kept the same. This is evident from 
the fact that the average Young's modulus for the SWCNT with two adjacent vertical defects 
(Table 2) is 704.2 GPa while the average Young's modulus for the SWCNT with two adjacent 
horizontal defects (Table 3) is 735.5 GPa. The results from the simulations indicate that moving 
the defect along the "z" dimension of the tube therefore has no effect on the Young's modulus 
for the defects of the same shape, and the removed carbon atoms are enclosed. 

3.2 Number of Defects 

The effect of the number of defects on the Young's modulus was also studied. Simulation runs 
were conducted for nanotubes with no defects, two defects, four defects, six defects and eight 
defects. Fig 6 shows the configuration of these various defects in the molecular structure of 
SWCNT. All these were taken to be adjacent vertical defects. 

As mentioned in section 2.1, Young's modulus was determined at densities for which the lattice 
parameters did not result in distortion of the SWCNT during minimization. These were then 
extrapolated to the actual nanotube density of 1.9 g/cm to obtain the Young's modulus at this 
physical density. In obtaining the relationship between the density and Young's modulus of the 
nanotube, the point (0, 0) was added to the simulated data points in figures 7 thru 11. This is due 
to the fact that without a SWCNT, the density of the cell is zero. Figures 7 through 11 show the 
simulated densities and the corresponding Young's modulus obtained for the cases of zero 
defect, two defects, four defects, six defects and eight defects respectively. The extrapolated 
Young's modulus for the density of 1.9 g/cm^ is also shown in all cases and the corresponding 
values are presented in Table 4. 
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Figure 6: Various numbers of defects in the SWCNT: (a) No defect, (b) 2 defects, (c) 4 defects, 
(d) 6 defects and (e) 8 defects 
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Figure 7: Young's modulus of SWCNT with no defect (pure nanotube) 
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Figure 8: Young's modulus of SWCNT with 2 carbon vacancy defects 
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Figure 9: Young's modulus of SWCNT with 4 carbon vacancy defects 
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Figure 10: Young's modulus of SWCNT with 6 carbon vacancy defects 
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Figure 11: Young's modulus of SWCNT with 8 carbon vacancy defects 

Table 4: Effect of number of defects on the extrapolated Young's modulus at the physical 
 density of 1.9 g/cm^  

Number of defects Young's Modulus [GPa] 

0 

2 

4 

6 

8 

768.7 

705.4 

676.1 

663.4 

662.9 

The effect of the number of carbon vacancy defects in a SWCNT on the Young's modulus of the 
SWCNT is shown in Figure 12. 

It is clear from figure 12 that the Young's modulus of the defective nanotube (SWCNT) 
decreases with increasing number of defects. This result conforms well to the reduction in 
fracture toughness for larger defect radius reported in the literature [11]. This phenomenon 
further supports the fact that defects in the SWCNT could be a potential cause of the disparity in 
results   obtained   from   experiments   and   molecular   modeling   simulations   of   polymer 
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nanocomposites containing CNTs. A noticeable observation from Figure 12 though is that, after 
a certain number of defects (six in this case); there is no more noticeable reduction in the 
Young's modulus. The variation of the defects percentage in the SWCNT and the corresponding 

percentage reduction ia Young's modulus of the SWCNT is shown in Table 5. 

780 

640 

2 4 6 

Number of defects 

10 

Figure 12: Effect of number of defects in SWCNT on Young's modulus 

Table 5: Variation of SWCNT percentage defects and Young's Modulus 

% defects in SWCNT % reduction in Young's Modulus [GPa] 

0.83 

1.66 

2.5 

8.24 

12.05 

13.7 

4.      Summary 

Experimental results obtained for the mechanical properties of SWCNTs and poljoner 
nanocomposites containing SWCNTs have tended to be lower than the results obtained from MD 
simulations. One potential cause for this disparity is the presence of molecular defects in the 
SWCNTs. 
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In this work, the effect of carbon vacancy defects on the Young's modulus of a 10-unit (6, 6) 
SWCNT was investigated using MD simulations. The defect in this work was made up of carbon 
vacancies. This was achieved by removing adjacent vertical carbon atoms from the SWCNT 
molecular ring. Two types of investigations were performed: 

l.The effect of the position of the carbon vacancy defect, and 

2.The effect of the number of the vacancy defects. 

The SWCNT models were created and minimized. MD simulations were run for 50 ps with a 
time step of 1 fs. Molecular trajectories were saved every 5000 steps and used for the evaluation 
of the Young's modulus. 

To study the effect of the position of the defect, the defect was moved along the "z" dimension 
of the tube. The results indicated that the position of the defect did not cause any change in the 
Young's modulus. The results varied by less than 1% (701-704 GPa) for the case where adjacent 
vertical atoms were removed. However, the results were different when the shape of the defect 
was changed by removing adjacent horizontal atoms (735.4-735.6 GPa). It must also be noted 
that these defects are in enclosed rings, not on the boundary rings. This ensures that equal 
numbers of C-C bonds are broken in all cases. 

The effect of the number of carbon vacancy defects was investigated by varying the number of 
defects incorporated into the SWCNT. Young's modulus was obtained for nanotubes with no 
defect, two defects, four defects, six defects and eight defects. The analysis results clearly 
indicate that as the number of defects increased, the Young's modulus decreased. Incorporation 
of six defects (2.5% defects) reduced the SWCNT nanotube modulus by about 13% (from 767 
GPa to 663 GPa). Furthermore, the analysis results indicate that increasing the number of defects 
beyond six not to result in any further reduction of the Young's modulus. 
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ABSTRACT 

Molecular Dynamics (MD) simulations are a viable alternative to experimental methods to 
obtain mechanical properties of EPON 862-DETDA-SWCNT composites. This paper 
investigates the effect of SWCNT carbon vacancy defects on the Young's modulus of the EPON 
862-DETDA-SWCNT composite using MD simulations performed via Accelrys. For a 
composite with 7-12 weight% of SWCNT, 2 carbon vacancy defects in the SWCNT is found to 
reduce the Young's modulus by 13-18%, while 4 carbon vacancy defect in the SWCNT reduced 
the Young's modulus of the composite by 21-30%. This clearly indicates that carbon vacancy 
defects are one potential cause for the disparity, and lower Young's modulus values of Epoxy- 
SWCNT composites cited in the literature. 

Introduction 

The inclusion of nanomaterial constituents into polymeric resin systems has gained significant 
attention because of the enhancement in mechanical and thermophysical properties that are 
attained [1- 3]. Carbon nanotubes (CNTs), in particular have been reported to increase the 
mechanical properties of its parent polymers significantly [4, 5]. The mechanical properties of 
CNT-reinforced epoxy systems such as the EPON 862-DETDA-SWCNT composite system have 
been studied through theoretical, experimental and computational analysis [6-9]. Experimental 
mechanical properties obtained and cited in the literature are generally lower than the values 
obtained from computafional analysis [10-12]. Some reasons for this disparity have been 
attributed to the fact that experimental macroscopic coupons have CNTs dispersed in various 
orientations, while the computational molecular models usually have the CNTs uni-directionally 
aligned. 

Computational molecular models are also normally small built with few cured epoxy molecular 
structures. The high computational costs restrict the use of larger molecular cure network models 
that could better represent the fiilly cured epoxy structure. Another reason for this disparity is the 
fact that  experimental  processes  could possibly introduce  defects  into  the  CNTs  while 
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computational models are based on ideal CNT molecular configuration. As cited in the literature, 
carbon vacancy defects in the CNT molecular structure have been known to cause changes in the 
properties of CNTs [13-16]. A study of the effect of carbon vacancy defects on the Young's 
modulus of the CNT has been presented in an earlier work by the present authors [17]. 
Chemically, these defects have been reported to enhance the affinity of the CNTs at the defective 
site making them most suitable as Platinum carrier electrodes in fuel cells [18]. However, these 
defects have been shown to have detrimental effects on the mechanical properties as cited in the 
literature [10-12], 

The present paper investigated the effect of carbon vacancy defects in the ideal CNT molecular 
configuration on the fundamental mechanical properties of the CNT-epoxy nanocomposite 
system through molecular dynamics simulations. The defects were in the form of loss of carbon 
atoms in the ideal CNT structure creating carbon vacancy defects. The polymer nanocomposite 
system used in the present work is the (6, 6) single walled carbon nanotube (SWCNT) and the 
matrix system was diglycidylether of bisphenol F (EPON 862) cross linked with 
diethyltoluenediamine (DETDA). 

Methodology 

All molecular models in this work were created in Materials Studio and molecular modeling 
analysis simulations were conducted using Discover and Amorphous module from Accelrys Inc. 
Materials Studio is a graphical user interface that allows construction of atomistic models and set 
up the analysis required for characterization of these molecular models and prediction of 
mechanical properties. MD simulations provide in detail the individual particle motions and 
structure developments as a fixnction of time [19], and therefore serve as a great tool to study the 
properties of a material system at the molecular/atomistic level. 

Molecular Model of EPON 862-DETDA-SWCNT Composite 

The recommended weight ratio of EPON 862 to DETDA for a fiiUy cured composite during 
processing is 100:26.4 [10, 11]. Figure 1 shows the molecular structures of EPON 862 and 
DETDA from Materials Studio. 

(a) (b) 

Figure 1. (a) EPON 862 and (b) DETDA molecular structures from Materials Studio 
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The molecular weight of EPON 862 is 312, and DETDA has a molecular weight of 178. Based 
on this, the molecular ratio of the fiiUy cured composite was formulated to be 2 molecules of 
EPON 862 linked with 1 molecule of DETDA, giving nearly the same recommended weight 
ratio of 100:26.4 that is employed in actual processing for the cured epoxy molecular structure. 
The fully cured composite molecular model was therefore constructed with 8 molecules of 
EPON 862 and 4 molecules of DETDA. 

0 0 
/\ /\ 

0—CH: —HC CH: 0—CH:—HC CH; 

EPON 862 (2 molecules) 

+ 
I 

CH,^ 

CHj 

H:N^ J.           NH: 

■CH:-- ^-^      CH: 

DETDA 

.-CH, 

OH 

0 — CHj—HC CH 

Figure 2. Cross-linking of 2 EPON-862 molecules with 1 DETDA molecule 

The DETDA molecule has 2 amine (NH2) groups and the EPON-862 molecule has 2 epoxide 
(CHCH2O) groups. Each of these amine groups in the DETDA can react with 2 epoxide groups 
ofthe EPON-862 [9]. 

The cross linking process was initiated by bonding 2 epoxide groups from 2 different EPON-862 
molecules with 1 ofthe amine groups. This formed a crosslink ofthe 2 EPON-862 molecules at 
the resulting N-atom of the DETDA. This reaction is shown in Figure 2. This cross linking 
process was repeated with different EPON-862 molecules for all the 4 DETDA molecules, so 
each DETDA molecule cross linked 2 EPON-862 molecules. 
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At this stage, each of the 8 EPON-862 cross linked molecules had one un-bonded epoxy group 
while each of the 4 DETDA molecules also had an un-bonded amine group. 4 of these epoxy 
groups were bonded with the 4 free amine groups resulting in a ring of 8 molecules of EPON- 
862 and 4 molecules of DETDA. Figure 3(a) shows a diagrammatic representation of the ring 
while Figure 3(b) shows the actual ring from Materials Studio. A unit cell of the SWCNT is also 
shown in Figure 3(c). 

EPON 862(1) EPON 862 

DETDA EPON 862 DETDA 

EPON 862 EPON 862 

DETDA EPON 862 DETDA 

EPON 862 EPON 862 

(a) 

Figure 3. (a) Diagrammatic representation of fully cured (8:4) EPON 862 cross linked with 
DETDA, (b) Fully cured (8:4) EPON 862 cross linked with DETDA from Materials studio, (c) 

SWCNT unit cell 

Three polymer nanocomposite molecular models with SWCNT weight percentages between 7% 
and 12% were employed in the present investigations. The three molecular models of the 
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defective SWCNT (DSWCNT) and cured epoxy composite system used in the present study had 
the following configurations and SWCNT weight percentages based on the cell dimensions of 
the molecular models: 

1. Molecular Model Configuration A: 3 unit cells of DSWCNT and 2 fiilly cured epoxy 
matrix corresponding to the CNT weight percentage of 11.28-11.58% 

2. Molecular Model Configuration B: 4 unit cells of DSWCNT and 3 fully cured epoxy 
matrix corresponding to the CNT weight percentage of 10.34-10.49% 

3. Molecular Model Configuration C: 4 unit cells of DSWCNT and 4 fully cured epoxy 
matrix corresponding to the CNT weight percentage of 7.95-8.08% 

The potential energy of the molecular models was characterized by the COMPASS force field 
[20], with the non-bond energies characterized by the Vander Walls and Coulomb's interactions. 
The dynamic analysis was performed using the NPT ensemble in conjunction with the Anderson 
temperature control method [21, 22] and the Berendsen pressure control method [20]. 

The different molecular model configurations were minimized to obtain the lowest energy 
configuration. A cascade of the steepest descent minimization method and the Fletcher-Reeves 
method were used for the minimization. The minimized energy molecular models were 
subsequently equilibrated with the NVT ensemble for 100 ps at 298 °K. A sample simulation 
molecular cell is shown in Figure 4. 

Figure 4. Simulation cell showing the CNT embedded in the fully cured epoxy matrix 
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Simulated annealing was used to mimic the curing cycle of EPON 862-DETDA-SWCNT 
composite and to ensure that the final configuration had the lowest energy possible. A 
characteristic of simulated annealing is lowering the temperature slowly in stages to allow 
thermal equilibrium of the molecular configuration to be attained at each stage. At high 
temperatures, molecules move freely, but as the temperature decreases, thermal mobility 
decreases, and the molecules tend to align in a state of minimum energy as long as the 
temperature is decreased slowly [23]. The molecular cell was heated to 498 °K, and the 
temperature was dropped to 298 °K in steps of 10 °K using the NPT ensemble with a specified 
pressure of 0.0001 GPa (1 atm). MD simulation analysis was conducted at each temperature 
during the simulated annealing process for 200 ps (200,000 fs) with a time step of 1 fs. The final 
molecular structure of each simulated annealing temperature step was used as the starting 
structure of the next step. The molecular configuration density reported at each simulated 
annealing temperature step was noted. All simulations employed NPT ensemble which keeps the 
number of molecules, pressure and temperature constant, but allows the volume of the cell to 
vary. The density therefore changes over the dynamic duration of the MD simulation and the 
reported density is the averaged density over the dynamic duration of the simulation. At 298 °K, 
an analysis of the elastic properties was performed by saving 10 trajectories and using them for 
the predicted Young's Modulus. Young's modulus as predicted and obtained from Accelrys 

analysis computations was calculated from the Lame constants ^ and ^ using Equation 1. 

E = fi 
3/1 + 2// 

, ^ + /^ . (1) 

A 6 x6 matrix of elastic constants generated via the Accelrys analysis computations was 
analyzed to obtain the modulus in various directional orientations. 

Defect Types and Defective SWCNT Composite Systems 

The effect of two and four carbon vacancy defects in the SWCNT on the mechanical properties 
of the EPON-SWCNT composite was studied. The vacancy defects in the SWCNT structure was 
introduced by removing two adjacent vertical carbon atoms on one side of the nanotube. 
Because of the short length of the nanotube in the present study, the four carbon vacancy defect 
was obtained by the removal of two adjacent vertical carbon atoms on opposite sides of the 
nanotube. 
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Figure 5. (a) Simulation cell with CNT having 2 defects (b) Simulation cell with CNT having 4 
defects (c) Zoomed CNT showing the 2 defects (d) Zoomed CNT showing the 4 defects (e) Side 

view of the 2 defects 

Figures 5(a) and 5(b) show the DSWCNT embedded within the epoxy molecular structure. The 
composite molecular configuration with the defective SWCNT and EPON configuration as 

previously discussed was constructed for each of the defective structures. Figures 5(a) and 5(b) 
presents the composite molecular structure with defective SWCNT and one of the fully cured 
EPON configuration employed in the present work. Figure 5(c) shows a zoomed image of the 
DSWCNT depicting two missing carbon atoms, while Figure 5(d) shows the DSWCNT 
depicting four missing carbon atoms. Figure 5(e) shows a side view of the zoomed CNT showing 
the two defects. 
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Rule of mixtures was used to obtain the density of the composite molecular configuration. The 
rule of mixtures density is given by Equation 2. 

mixture - PSWCNTJSWCNT + Presin fresin (2) 

where '^'««'"'-e' Pswcm ^^^ ^'"''"are the densities of the mixture, SWCNT and the epoxy resin, 

respectively, 
respectively. 

f f   ■ respectively, and •' SWCNT ^nd   '""'" are the volume fractions of the SWCNT and the epoxy resin, 

With the SWCNT having a density of 1.9 g/cm^ and the epoxy resin having a density of 1.2 
g/cm , the rule of mixtures densities of the composite configurations were calculated using 
Equation 2. 

The composite rule of mixture density for different molecular configurations and weight 
percentages of SWCNT is presented in Table 1. 
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Table 1. Rule of mixtures densities of the composites 

Model 
Weight percentage of 
SWCNT 

Rule of mixtures 
density of 
composite [g/cm^] 

No defect 

3 units SWCNT, 2 units resin 11.87 

4 units SWCNT, 3 units resin 10.69 

4 units SWCNT, 4 units resin           8.24 

1.2549 

1.2492 

1.2376 

2 defects 

3 units DSWCNT, 2 units resin 11.58 

4 units DSWCNT, 3 units resin 10.49 

4 units DSWCNT, 4 units resin         8.08 

1.2539 

1.2482 

1.2368 

4 defects 

3 units DSWCNT, 2 units resin 11.28 

4 units DSWCNT, 3 units resin 10.34 

4 units DSWCNT, 4 units resin         7.95 

1.2521 

1.2475 

1.2359 

Model Configuration A: 3 units of SWCNT, 2 units of resin 

Model Configuration B: 4 units of SWCNT, 3 units of resin 

Model Configuration C: 4 units of SWCNT, 4 units of resin 

The Young's Modulus at the rule of mixtures density was obtained by conducting simulated 
annealing analysis as discussed earlier at three different lattice configurations for each composite 
molecular model configuration (corresponding to different weight percentage of CNT) and 
extrapolating to the corresponding rule of mixtures density. 

Results 
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The Young's modulus at the rule of mixture density for the three composite molecular 
configurations with different weight% of defective SWCNT studied are shown in Table 2 and 
Figure 6. Also shown are the Young's modulus obtained for the composite system with pure, 
non-defective SWCNT [10]. 

Table 2. Evaluated Young's modulus at Rule of Mixture Density for the composites studied 

CNT weight % 

(No defect) 

Young's Modulus [GPa] 

11.87 

10.69 

8.24 

No defect [10] 

74 

65 

52.5 

2 defects 

60.75±1.96 

54.77±1.12 

45.38±1.05 

4 defects 

52.07±1.82 

48.68±1.06 

41.00±1.69 

ou 

♦ No defect ♦ 
70 

n 
• 2 defects ♦ 

S. 60 ▲ 4 defects • 
O 

« 50 
♦ 

3 • 
^40 A 
S 
.<«  30 
O) 
c 
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>■ 
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0 
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Weight percentage of SWCNT 

14 

Figure 6. Variation of Young's modulus with SWCNT weight percent for No defect, 2 defects 
and 4 defects 

The following can be inferred from Table 2 and Figure 6. 
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• For a given initial weight percentage of SWCNT, the Young's modulus of the EPON- 
SWCNT composites with non-defective SWCNT were the highest (52.5-74 GPa, for the 
three weight % of the SWCNT studied in the three molecular model configurations). 

• The predicted Young's Modulus for the composites with 2 SWCNT vacancy defects was 
lower (45.38-60.75 GPa, for the three weight% of SWCNT studied). 

• The predicted Young's Modulus was the lowest for the composite system composed of 
EPON and SWCNT with 4 carbon vacancy defects (41.00-52.07 GPa, for the three 
weight % of SWCNT studied). 

The above inferences ascertain the fact that the molecular vacancy defects in SWCNT are one 
potential cause for the reduction of Young's modulus of the EPON-SWCNT nanocomposite. 

The reduction in Young's modulus between the pure CNT composite and the composite with two 
defects in the CNT was in the range of 13-18% while that between the pure CNT composite and 
the composite with four defects in the CNT was 21-30%. This is presented in Table 3. 

Table 3. Percentage reduction in Young's modulus with the introduction of carbon 
vacancy defects in CNT 

CNT weight % Young's Modulus [GPa] 

(No defect) 

Vo reduction with 2 defects % reduction with 4 defects 

in composite in composite 

11.87 17.9 (2.78% defects in CNT) 29.6 (5.56% defects in CNT) 

10.69 15.7 (2.08% defects in CNT) 25.1 (4.17% defects in CNT) 

8.24 13.6 (2.08% defects in CNT) 21.9 (4.17% defects in CNT) 

Table 3 can be interpreted as follows: 

• For the 11.87% SWCNT composite system, introduction of 2.78% (equivalent to 2 
carbon vacancy defects) of defects into the SWCNT resuhed in 17.9% overall reduction 
in the Young's modulus of the composite. The introduction of 5.56% of defects in the 
SWCNT (corresponding to 4 carbon vacancy defects) resulted in 29.6% reduction in the 
Young's modulus of the composite. 
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For the 10.67% SWCNT composite system, introduction of 2.08% defects 
(corresponding to 2 carbon vacancy defects in the SWCNT) resulted in 15.7% overall 
reduction in the Young's modulus of the composite while introduction of 4.17% of 
defects ( corresponding to 4 carbon vacancy defects) in the SWCNT resulted in 25.1% 
reduction in the Young's modulus of the composite. 

For the 8.24% SWCNT composite, introduction of 2.08% of defects into the SWCNT 
resulted in 13.6%) overall reduction in the Young's modulus of the composite while 
introduction of 4.17% of defects into the CNT resulted in 21.9% reduction in the Young's 
modulus of the composite. 

Summary and conclusions 

In this work, the effect of carbon vacancy defects on the mechanical properties (in particular 
Young's Modulus) of SWCNT-EPON 862-DETDA nanocomposite was investigated with MD 
simulations employing Materials Studio and Accelrys. 

Three epoxy - SWCNT molecular model configurations with different weight percentages of 
SWCNT was employed in this study. These molecular models had SWCNT weight percentages 
ranging between 1% and 12%). Two types of carbon vacancy defects were incorporated into the 
defective SWCNT models; 2 defects and 4 defects. After creation, minimization, and 
equilibration of the different molecular models; MD simulations were conducted following a 
simulated annealing process with temperatures ranging from 498 "K to 298 °K in steps of 10 °K. 
Dynamic simulations were conducted for 200 ps (200,000 fs) with a time step of 1 fs at each 
simulated annealing temperature studied. The final molecular structure of each annealing 
temperature step was used as the starting molecular structure of the next annealing temperature 
step. The average density was obtained at each simulated annealing temperature step. At 298 °K, 
10 trajectories were saved at equal time intervals (20 ps) and employed in the mechanical 
property estimations. The models with two defects (2.08-2.78% defects from the reduction in 
carbon atoms due to their removal to create SWCNT carbon vacancy defects) showed a 
reduction in Young's modulus between 13-18% when compared with the non-defective SWCNT 
- EPON composite models. The models with four defects (4.17-5.56%) defects) showed a 21- 
30%) reduction in the Young's modulus compared to pure, non-defective SWCNT - composite 
molecular models. The influence of SWCNT defects (due to carbon vacancy defects in the 
present study) reducing the Young's modulus could potentially be a contributor to the disparity 
seen between the MD modeling results and experimental data cited in the literature. 
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Abstract 

Delamination is one of the important failure mechanisms in composite materials. Several 
methods such as stitching of fiber plies, self-healing polymer materials, and interface 
reinforcements have been developed, investigated and employed over the years to improve the 
delamination characteristics. The usage of interface material layers (in particular, sub-micron and 
nano level materials) has also been recently investigated. This study focuses on the addition of 
electrospun nano fiber interface layers between the traditional composite laminates and its effect 
on the delamination characteristics in an epoxy-fiber glass composite system. Electrospun glass 
nano fiber layers formed with TEOS (Tetra Ethyl Ortho Silicate) sol gel system are used as 
interface layers. Delamination characteristics of the composite with and without electrospun fiber 

interface layers are studied using double cantilever beam (DCB) tests. The experimental 
characterization showed that addition of nano fiber layers provided consistent improvements in 
the Mode-I fracture toughness values. Finite element modeling of the crack growth and 
delamination failure with and without the nano fiber layers are studied and compared. The 
Mode-I fracture toughness values from the finite element modeling are compared with the 
experimental data. 

1 Introduction 

High specific strength, ability to be tailored with desired directional properties along with 
integrability of cores and stiffeners easily; adaptability for complex shapes, corrosion resistance, 
dimensional and hygro-thermal stability with excellent fatigue performance and low specific cost 
are some of the prominent properties of composite materials that influences their widespread 
application in the areas of aerospace, naval, automobile, wind energy, bridge and sports goods 
industry. In spite of these advantages, there are integral challenges with composite material 
development that arise due to inherent anisotropic nature of these laminated structures. A 
laminated composite structure consists of fiber laminas which could be unidirectional, cross-ply 
or multi-directional embedded in polymer matrix resin. While the fibers are the load carrying 
members, the resin matrix is a load transfer member. Over the period of last 30 years variety of 
fibers made of glass, organic (aramid), ceramic and carbon fibers have demonstrated effective 
reinforcement to provide tailored properties of composite parts. Due to their good chemical and 
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thermal stability thermoset resins in particular epoxies are predominantly used as matrix for 
many of the applications listed above. 
As the strength of the fiber is much higher than the polymer matrix, failures of composites is 
initiated in the matrix. Fiber-Polymer matrix composites have very high anisotropy; hence the 
studies of failure mechanisms are much more complex. Complexity increases as failure of 
composite parts is also dependent on the loading conditions, shape (geometry) and the properties 
of its constituents. Invariably failure of composites at the micro level is in the form of damage 
initiation, which over the life of a composite, is dispersed at random locations. When the density 
of micro damage increases, there is a tendency towards coalescence leading into catastrophic 
fracture [1-2]. The three regions in a composite that can experience damage leading to the 
fracture are fiber, matrix or interface. Consequently, the failure modes identified in composites 
are (i) Matrix Cracking, (ii) Interface Cracking, (iii) Delamination and (iv) Fiber breaking. 
Figure 1 shows schematically various failure modes that could occur in laminated fiber 
reinforced polymer matrix composites. 
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Figure 1: Failure Modes in Composites 

One of the weakest and most frequently encountered failure modes of fiber glass composite 
laminates is interlaminar delamination. This is also referred to as interlaminar cracking that can 
cause severe loss of stiffness, which can propagate into catastrophic failure by means of splitting 
of plies in a laminated composite. Delamination failure is complex due to geometric and material 
discontinuity coupled with variety of loading that causes growth of delamination [3]. 

Various methods have been adopted to improve resistance to delamination. One of the earliest 
attempts to improve resistance to delamination by optimizing stacking sequence was by Pagano 
and Pipes [4]. They predicted detailed stacking sequence and specific layer orientations to 
suppress damage growth under uniaxial static and fatigue loading. It was inferred that 
interlaminar normal and shear stresses lead to coalescence of micro-cracks resulting in the 
strength degradation due to delamination. It was proved experimentally, that the optimized 
stacking sequence resulted in better strength of composite laminates. Matrix toughening is 
another method that has proved to be effective to resist delamination. Various types of additives 
like alumina nanoparticles [5] and CNT's [6] have been demonstrated to increase fracture 
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toughness. There exists a stress concentration at the free edges of composite laminate, which 
leads into delamination. To suppress this stress concentration various methods of edge design 
have been studied in the past [7]. Stitching, braiding and knitting techniques have been adopted 
by many researchers to improve out of plane properties. While out of plane properties were 
improved using these techniques, in some cases drastically, there was substantial degradation in 
the in-plane properties of the composites. Interleaving is one of the prominent mechanisms 
adopted and studied to improve resistance to delamination in the recent past [8-10]. These 
methods while successful resulted in pitfalls which led to either degradation of some of the 
properties or an increase in weight and/or increase in the cost of composite 
material/manufacturing. In present study, performance and effect of interleaved electrospun 
nanofibers in a glass fiber prepreg composite is analyzed experimentally and compared with a 
simplified finite element modeling approach for Mode I fracture toughness. 

There are several of finite element based approaches developed to analyze mode I fracture 
toughness. Virtual Crack closure technique (VCCT) is one such approach introduced by Ronald 
Krueger and Andrzej Leski [11-12]. VCCT is based on Irwin's crack closure integral, which 
assumes that the energy AE released during infinitesimal crack growth from a to a + Aa is 
equivalent to the energy required to close the same crack. Bonhomme [13] has extended the 
study on the VCCT method in his research to introduce the two step extension method. In the 
two step method, the crack path is modeled with a pair of nodes coincident at the same location. 
The fracture toughness is calculated in two steps compared to one step in VCCT. In the first step, 
the forces at crack tip are calculated; and then an imposed displacement is applied in conjunction 
with the release of coupled degrees of fi^eedoms of nodes. J-Integral is a method to calculate 
strain energy release rate per unit fracture surface area. This was developed by Cherepanov [14] 
and later modified by Jim Rice [15]. While these analytical methods are proved to be suitable for 
Mode I fracture toughness assessment via finite element modeling, they are complex in their 
implementation and expensive in terms of computational resource. 

In this work, we evaluate the applicability and performance of a simplified finite element 
modeling approach proposed to analyze mode I fracture toughness. Mode I fracture toughness 
values from the finite element modeling are compared to the experimentally determined values. 
The material system used was LTM45EL/7725 pre-pregs with layers of tetra ethyl ortho-silicate 
(TEOS) nanofibers produced by electrospinning at the critical interface of a double cantilever 
beam (DCB) specimen. Finite element modeling results are compared for the DCB specimens 
those were made and tested using ASTM D 5528 standard. 

2 Experimental Investigations 
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This section briefly discusses the manufacturing of TEOS electrospun nanofibers and DCB 
specimen for Mode I fracture toughness characterization using ASTM D 5528 standard 
procedure. These experimental investigations were conducted as a part of research effort on 
integrated composite technologies through a project on Center on Nano Science and Materials at 
North Carolina A&T State University. 

2.1 Electrospinning of TEOS Nanofibers 

Electrospinning is a simple and versatile process to generate ultra-thin fibers from a variety of 
polymer, ceramic or composite solutions [16-17]. The fundamental four components associated 
with the electrospinning process as seen in the Figure 2 (a). In the electrospinning process, a 
solution droplet is fed to the spinneret tip at a controlled rate using a programmable dispensing 
pump. The dispensing pump is a Model NE-1000 Multi-Phaser supplied by New Era Pump 
Systems Inc., and has the capacity of holding a syringe up to 50 mm in diameter. The pump can 
dispense solution over a wide volume range of 0.1 ml per min. to 10 ml per min. 

The solution droplet at the tip of the spinneret is acted upon by electro-hydrodynamic forces. The 
electrical forces are due to the potential difference applied between the spinneret and the 
collector plate. The spinneret is kept at a positive potential and the collector plate is usually kept 

grounded. A FC Series, 120 Watt Regulated High Voltage DC Power Supply supplied by 
Classman High Voltage, Inc., maintained a voltage of 18kV between the spirmeret and the 
collector plate. Due to this applied potential difference, the solution droplet at the tip of the 
spinneret acquires positive charge on the surface. The hydro-dynamic forces are due to the 
surface tension of the liquid solution. The solution droplet is attracted to the collector plate and 
forms a 45° semi-angle at the tip. The formed shape is called a "Taylor Cone" [18]. When the 
viscosity of the solution is sufficient to provide stringiness, there is an elongation of the droplet 
into a jet, which under the action of whipping and "Bending Instability" [19] forms fibers in the 
range of 3mn to lum in diameter depending on the solution properties. 
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Figure 2: a) Electrospiiming Setup, b) Electro spinning Fiber Jet 

Figure 2 (b) illustrates a droplet extending into a jet and then into an instability region. As the 
droplet is stretched into a fiber and deposited onto the collector plate, there is an evaporation of 
solvents. The deposition of fibers onto the collector plate is a random dispersion. The thickness 
of this deposition is controlled using a steady motion of collector plate using the X-Y Velmex 
Slides. The length of the deposited fibers can be 10 to 100 times to that of the fiber diameter. To 
produce fibers less than 500 nm in diameter consistently, the electrospinning parameters are 
experimentally found to be: 1 ml/hr rate of dispensing, 18 kV potential difference, a 80 mm 
distance between the spinneret and the grounded collector plate and solution viscosity of 100- 
200 centipoises. It was observed that, if the TEOS solution at the time of electrospinning 
contains an excess of solvents, the formed random nanofiber mats evaporate off these solvents at 
room temperature and generate cracks. Hence, the TEOS random nanofiber sheets were kept at a 
normal atmospheric room temperature for about two days for natural evaporation of the solvents 
to assess the consistency of the electrospun nano fibers. The morphology of the electrospun fibers 
can be studied using a Scanning Electron Microscope (SEM). Figure 3 illustrates micrograph of 
the TEOS electrospun fibers captured using a Hitachi S-3000 N SEM at 6000x magnification. 
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Figure 3: SEM Micrograph of TEOS Electrospun Nanofiber 

The spiimable TEOS solution is obtained by hydrolysis and poly-condensation during the aging 
process of TEOS as specified by the following chemical reaction [20]. Ethanol is used as 
solvent for hydrolysis and HCL is used as catalyst to accelerate cross linking during aging 
process. 

nSi(OC2H5)4 + 4H2O -> nSiOz + 4nC2H50H (1) 

2.2, Mode I Characterization of TEOS Interleaved DCB Specimen 

One of the most critical tasks for conducting DCB tests is to make DCB specimen. It is critical 
because if the specification of ASTM standard is to be achieved, significant control is required 
vi^hile manufacturing the composite panel. The geometry specified for a DCB coupon specimen 
is as shown in Figure 4 with the range for the dimensions within which DCB specimen should be 
made. Final consolidation of the DCB specimens was completed under atmospheric vacuum and 
temperature. 

While laying up composite panel for DCB specimens, Teflon fihn is laid up at the mid-plane. 
This is above the fifth ply of a ten ply E-glass fiber composite. The length of the Teflon fihn 
should be about 4 inches while laying up the plies; with 1 inch Teflon film for the trimming 
allowance and 1 inch for the piano hinge tab length. This ensures a 50.8 mm (2.0 in) initial crack 
length in the DCB specimen. The thickness of the non-adhesive insert for the initial crack should 
not be greater than 13 microns (0.0005 inch). For resin requiring a temperature less than 177 "C 
(350 F), polytetrafluoroethylene (PTFE) is recommended. For resins requiring curing above this 
temperature, a polyimide film is preferred. 

The specimen dimension as recommended in the ASTM standard requires a 127 mm (5 inches) 
specimen length, but it is recommended to have at least 50.8 mm (2 inches) more in length, so as 
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to make a total of 177.8 mm (7 inches). Out of this 25.4 mm (1 inch) will be for the bonding of 
piano hinges, 50.8 mm (2 inch) initial crack length and the crack growth observed up to 50.8 mm 
(2 inch) with additional 50.8 mm (2 inch) remaining as the end tolerance. The Mode I crack 
opening is independent on the width of the specimen with the suggested width of specimen of 
about 0.8 inch to 1.0 inch. The thickness recommended is 3-5 mm (0.12 - 0.2 inches). The 
detailed procedure for bonding piano hinges and generating markings on "White-out" applied on 
one side of the DCB specimen is elaborated in the standard. The marking which start from the 
tip of the non-adhesive insert has the first five graduation spaced at 1.02 mm (0.04 inches) and 
the remaining graduations are spaced at 5.08 mm (0.2 inch). 
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Figure 4: ASTM DCB Specimen Configuration 

A Modified Beam Theory (MET) method which gives most conservative values was used to 
compute the Mode I fracture toughness (Gic) values. MBT calculates Gic as follows 

3xPxJ 

"^    2xbxa Gir- (2) 

where, 
P= LoadN(lbf), 
5 = Load point displacement mm (in), 
b = Specimen width mm (in), and 
a = Crack (delamination) length mm (in). 
GIC = Mode I Interlaminar Fracture Toughness J/m~ (Ibf/in^) 

Table 1 presents the mode I fracture toughness values obtained experimentally for the composite 
DCB specimen with and without electro-spun layers. 

Specimen Neat (J/m^) Espun 1.0 gm (J/m ) 

1 335.87 646.76 

2 419.26 578.00 
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3 412.34 655.64 

4 332.56 801.76 

Avg. Gic 375.00 670.54 

Std. Dev. 47.20 94.11 

Table 1: Comparison of average Gic values for Prepreg composites with and without electrospun 
interface layer 

3 Finite Element Modeling and Methodology for Gic Computation 

3.1. Modeling Geometry of DCB Specimen 

The fundamental concept for the fmite element modeling and analysis of DCB specimen 
currently is based on the incremental deformation and damage progression of elements. The 
continuous deformation is provided by incremental escalation of load values to a point where 
few elements in the model exceeds the failure stress. Those elements which experience stress 
level higher than the failure stress are substituted with weak material properties so as to identify 
the "Failed" elements. Damage progression is simulated iteratively by load increment and 
identifying and updating of failed elements. 

The finite modeling of the composite laminate is conducted using a mosaic geometry for the 
warp and weft elements of woven fabric [21]. In a modeled laminate, mosaic geometry is 
interpreted as one mosaic cell representing warp (0 degree) and another mosaic representing weft 
(90 degree). Eight such mosaic elements are placed in orthogonal array as shown in for a plain 
weave fabric unit cell model. Dimensions of unit cell conforms the warp and weft tow geometry 
of the actual prepreg material LTM45EL/7725 modeled currently as plain weave. Each unit cell 
consists of 4 warp elements and 4 weft elements as shown in Figure 5. The unit cell is repeated 
along the length and width to get the required specimen dimensions to form a single lamina 
layer. This layer is repeated along the thickness direction so as to be equivalent to the actual 
dimension of DCB specimen as that was used in the experiments. 
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Length 
X (inch) 

Thicl<ness 
Y(inch) 

Width 
Z(inch) 

Warp 
0.0787 0.0098 0.0787 

Weft 
0.0787 0.0098 0.0787 

Figure 5: Unit cell showing warp (0 Degree) and weft (90 degree) and the dimensions 

3.2. Boundary Conditions and Loads 

Due to symmetry, only one half the thickness of the DCB specimen geometry was modeled. 
Symmetric boundary conditions were applied as defined to be zero displacements in y and z 
directions from the point of crack tip for the bottom layered nodes as shown in Figure 6. The 
load P was applied during finite element modeling analysis to conform to the load application 
during the experiments as per ASTM standards at one inch from the edge of the DCB model 
geometry and at two inches from the crack tip. Figure 7 shows the position of load application in 
the FEM model. 

Figure 6: Constraints and load applied in the finite element model 

nnaniiiiiiiHMBiiiiniminiiiiiiiimiiiiiiinii!! 
< ►■«- 

1 inch 2 inch 

Figure 7: Load P applied in the DCB finite element model 

3,3. Failure Criteria and Degradation of Elements 
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During static finite element analysis of the crack propagation in the DCB specimen, load was 
increased incrementally through distinct consecutive finite element analysis, and the 
corresponding Von Mises stresses along x-direction near the crack tip were examined. The 
incremental load increase was continued until the elements in the vicinity of crack tip failed. The 
criterion for the failure of the elements was set to be the yield point of the resin, which is about 
7,500 psi [22]. Once the stresses in the elements in the vicinity of the crack tip reaches 7,500 psi 
or more, they were considered to have failed and degradation of these elements was done. The 
failed elements still possess a reduced load carrying capacity and are still involved in the failure 
phenomena. This behavior of failed elements is implemented in the finite element modeling 
analysis by degrading the properties of the failed elements. Degradation of elements is also 
known as killing of elements, in which the elastic moduli of failed elements are reduced to a 
negligible value of 100 psi in the present work, and a poison's ratio of 0.01. The modulus is not 
reduced to zero to avoid numerical difficulties which occur in finite element computations. The 
crack growth phenomenon in the finite element analysis was implemented by the method of 
degrading the failed elements and removing the constraints associated with these elements so 
that they will have a very negligible effect on the subsequent analysis for the crack growth. This 
method of removing the constraints was utiUzed to emulate the crack growth the finite element 
models. 

3.4. Finite Element Modeling Results for DCB Characterization 

The composite material properties used in the finite element modeling were calculated using rule 
of mixtures. To determine equivalent composite properties, baseline modulus of fabric 7725 and 
Epon 862 were used with a 60% fiber volume fraction. The electrospun fiber layers were added 
as an additional homogeneous material layer in the finite element model and were defined with 
the equivalent fiber properties. The conditions for the propagation and growth in the DCB 
specimen finite element models for the electrospun fiber interface layer composites are taken to 
be the same as that of the neat composite DCB specimens. Mode I fracture toughness values 
were computed according to the modified beam theory as specified in ASTM 5528 standard [23] 
with the load and displacement values obtained from the fmite element analysis. The static, 
linear finite element analysis was performed using the commercial ANSYS finite element 
analysis software. The load-crack growth characteristics and the Mode-I fracture toughness 
values from the finite element analysis are compared. Mode I fracture toughness values 
determined experimentally from one set of experiments and from the present finite element 
modeling are presented in Table 3. 

Fracture toughness Gic 
 (J/m^)  

Finite Element Analysis Average value from 
experimental test (J/rn^) 
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Neat Composite 429.25 375.23 

Electro-spun Interface 
Composite 

566.76 670.54 

Table 3: Mode 1 Fracture toughness Gicby finite element method and experimental 
characterization 

4. Concluding Remarks 

Electrospun nanofiber interface layers in woven fiber composites provide an effective way of 
integration of nanomaterial systems in fiber composites and have shown to improve the 
delaminating mode I fracture toughness characteristics. A simplified fmite element modeling 
approach was investigated for the modeling and analysis of the crack propagation in the 
composite DCB specimen. The experimental Mode I fracture toughness values and the finite 
element modeling analysis both based on modified beam theory are compared. The mode I 
fracture toughness Gic obtained by finite element analysis for neat E-glass laminate were over 
predicted by 14 percent when compared to the mean value of the experimental data and under 
predicted by 15 percent over the mean experimental value in the case of E-glass laminate with an 
electro-spun interface layer. The maximum value of experimental results differed only by 8 J/m^ 
when compared with finite element analysis result for E-glass prepreg laminate without electro- 
spun interface, while the finite element analysis results compared with E-glass electro-spun 
interface layer varied by only 9.75 J/m^ from the minimum value of the experimental data. The 
mode I fracture toughness from the finite element modeling are in agreement and consistent 
within the experimental range values. The present finite element modeling analysis is based on a 
linear elastic model and a simplified approach of crack propagation by degradation. Even with 
the simplified crack propagation model and linear elastic analysis in the finite element modeling, 
the present simplified finite element modeling approach captures the crack propagation behavior 
effectively and provides a computationally efficient modeling approach for delamination. 
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A-2 Computational multi-scale deformation behavior in metallic and non-metallic 
systems 

Research activities and technical approach in this area during the project period focused on the 
deformation behavior of nanoscale material systems with applications to tensile, flexural, and 
crack propagation. 

A-2-1 Molecular Dynamics Modeling of tensile, flexural and crack propagation 
in metallic systems 

Authors: R. Mohan, Y. Purohit, Y. Liang, North Carolina A&T State University 

Published Journal Article: Journal of Computational and Theoretical Nanoscience. Vol. 9, Pages 
1-13. 2012. 

ABSTRACT 

Nanomechanics is an evolving field that investigates the mechanical properties, deformation 
behavior and characteristics of nanoscale structures. Due to the smaller lengths at the nano level, 
principles of mechanics are employed in conjunction with interatomic potentials, molecular 
forces and molecular dynamics. This paper highlights the underlying principles and discusses the 
tensile and flexural deformation of Nickel nanowires; and dynamic crack propagation in 
nanoscale Nickel and Nickel-Aluminum bimetal interface. 

The tensile deformation behavior analysis indicates that Young's Modulus was independent of 
the cross sectional area of the nanowire, and the strain rate. The flexural deformation and 
vibration behavior indicates that the frequency of the vibrations as computed from time 
displacement deformation behavior of the molecular configurations of the Nickel nanowire 
beams are independent of the magnitude of external loading, and is consistent with the classical 
beam theory. 

The dynamic crack propagation behavior in a Nickel single crystal and a Nickel-Aluminum 
bimetal interface are investigated. The propagation mechanisms and fracture behavior in Ni are 
compared with such behavior in Ni-Al nanoscale bimetallic layer that initiates and propagates 
from Ni towards the Ni-Al bimetal interface. Our results for Ni show an initial brittle crack 
propagation followed by a roughening of the crack surfaces at one-third of the Rayleigh wave 
speed. In Ni-Al, the crack surfaces initially grow brittle. Two regimes of crack propagation 
velocities were observed in this case with crack getting decelerated as it nears the interface. 
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Further dynamic analysis of the crack propagation indicated a cease in the crack propagation in 
Ni due to a brittle to ductile transition. In Ni-Al bimetal interface system, as the crack approaches 
the interface, a process zone representing local disorder at the crack tip was observed to start 
growing and interacting with interfacial defects that eventually results in a blunting of the crack 
tip. 

INTRODUCTION 

Deformation behaviors of nanoscale metallic systems under mechanical loading conditions have 
received considerable attention in the recent years. For example, in applications such as 
nanoelectronics and nano-optoelectronics', the extraordinary mechanical strength along with the 
small dimensions for the efficient transport of electrons of metallic nanowires have shown great 
potential for the minimization of electronic devices. These metallic nanowires also show 
potential for applications in electronic packaging, nanoelectronic and nanomechanical devices. 
The structural strength and the stability under mechanical and thermal loading conditions of such 
nanowires is however a significant issue. The deformation behavior of these nanowires under 
different mechanical loads (for e.g., tensile, bending) is poorly known. Experimental 
investigations of these behaviors are impractical due to their size and the complications of 
applying these loading conditions via nano load cells within high resolution microscope systems. 
Continuum mechanics based approaches generally treat the small cross-sectional area 
configurations of these nanowires to be one-dimensional, where the cross-sectional effects are 
taken to be negligible. However, at the atomistic level, the mechanical deformation and the 
failure characteristics are inherently three-dimensional; depend upon the atomistic level 
interactions and require analysis methodologies that effectively emulate the three dimensional 
atomistic level characteristics. 

Associated with mechanical deformation of the material systems are their fracture and failure. 
Even at structural macro scale, the homogeneous, macroscopic (continuum) behavior is governed 
by the physical processes that occur at the heterogeneous microscopic and sub-microscopic 
length scales. For example, most metallic materials at macro scale consist of polycrystalline 
aggregate of heterogeneous grains at the fine scale. The mechanisms of fracture and the crack 
propagation not only depend upon the type of loading but also upon the type of defects such as 
grain boundaries present as well as the physical interactions of dislocations in the microscale 
grain boundaries. The forming dislocations in the single grain of the metallic material may also 
depend on the heterogeneous interactions between the lattices of metal atoms at the atomistic 
levels. 

Continuum-based theories of fracture mechanics provide a variety of energy and force criteria to 
model and predict the critical conditions for the onset and fiirther growth of statically or quasi- 
statically loaded stationary cracks. The continuum theories have led to the development of a 
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detailed understanding of the mechanics of fracture. Despite their valuable contributions, 
continuum modeling does not provide atomistic level details at nanoscale dimensions, interface 
structures and properties, internal stress and energy distribution, dislocation nucleation and 
motion; crack propagation and its interaction with interfaces in metallic composites to include 
the effect of structures and processes that become important at nano scales. The strong constraint 
of the small length scale on the crack behavior and dislocation activities at the nanometer scale 
also give rise to deformation and failure mechanisms that differ significantly from the bulk 
metals. Moreover, the interaction of cracks and dislocations with the interfaces becomes the 
controlling parameter of plasticity in these systems. The detailed understanding of this problem 
includes nucleation of dislocations at the crack tip, creation of dislocations at interfaces, 
transmission of dislocations through interfaces and emission of dislocations from the interfaces. 
This is only possible through three-dimensional atomistic level characteristics of such material 
nanoscale material systems. 

Nanomechanics is an evolving field that investigates the mechanical properties, deformation 
behavior and characteristics of nanoscale structures. Due to the extremely smaller lengths at the 
nano level and to capture the three-dimensional atomistic deformation characteristics of 
nanoscale material systems, principles of mechanics are employed in conjunction with 
interatomic potentials capturing the molecular forces, atomistic level interactions and molecular 

dynamics; and offer a potential to understand the associated deformation behavior at nanoscale. 
The computational modeling of nanoscale deformation behavior employs computational 
techniques based on molecular dynamics simulations that couple the principles of mechanics 
with molecular forces and interatomic potential providing an effective methodology. The present 
paper focuses on the computational modeling of the deformation behavior in nanoscale material 
systems with applications to tensile, flexural and crack propagation in nano scale metallic 
systems, hi particular, this paper discusses the tensile and flexural deformation of Nickel 
nanowires; and nanoscale dynamic crack propagation in Nickel and Nickel-Aluminum bimetal 
interface. The basic principles associated with the modeling of deformation behavior in 
nanoscale material systems are briefly highlighted first. This is followed by the discussions on 
the tensile and flexural deformation behavior in Nickel nanowires and dynamic fracture in a 
Nickel-Aluminum nano scale bimetallic interface. 

NANOMECHANICS AND MOLECULAR DYNAMICS SIMULATIONS 

Deformation at nanoscale based on nanomechanics couples the principles of traditional 
mechanics and load applications with the fiandamental aspects of chemistry and solid state 
physics. The movement of atoms in atomistic level systems can be analyzed through molecular 
dynamics that moves the atoms using classical mechanics equations of motion according to the 
inter-atomic force models from chemistry. Such equations of motion can be used to determine 
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the equilibrium (and minimum energy) structures or explore non-equilibrium dynamics. The 
atomistic scale dynamic deformation analyzes the dynamic moving locations of atoms via 
integration of the equations of motion. Computationally, the Newton's equations of motion 
applied at each atom are numerically integrated. The classical equation of motion is given by 

F. = -V.n(X) = ^^ = m. r^ = m. —- = m.a. 
ax,       ' de      ' dt 

(1) 

where Y[(X) is the potential energy of the system, Xj and 111, are the atomic positions and masses 

of each atom, and t is the time. The terms v,- and a, represent the velocity and acceleration of 

each atom. The potential energy f] depends on the atomistic material and is given by an 
analytical expression that yields energy as a function of the relative position of the atoms. 
Several potential energy functions exist for different materials and other multi-material systems. 
One such potential is Embedded Atom Method (EAM) potential and is used in the present study 
2,3 

Any molecular level system can be completely formulated by the positions X and velocity V (or 
momentum P) of atoms. The above equation is similar to the Newton equations of motion 
employed in continuum mechanics, but applied at the atomistic level. The dynamic behavior of 
the time-dependent atom motion is computed using an integrator such as the Verlet integrator'* 
to calculate the trajectories of the atoms. The time-scale involved in the MD simulations is of the 
order of O (10"'^ - 10"'^ sec) and the length-scale is of order O (10""^ - 10"^ m). The molecular 
dynamics simulator employed in the present study is LAMMPS (Large-Scale Atomic/Molecular 
Massively Parallel Simulator)f from Sandia National Laboratory^ 

TENSILE DEFORMATION OF NICKEL NANOWIRES 

The nano scale tensile and flexural dynamic deformation behavior of the Nickel (Ni) nanowires 
due to tensile loading and flexural bending are presented in this section. The stress-strain 
constitutive behavior, tensile strength and the Young's modulus for various Ni nanowire 
configurations are presented and discussed. The natural frequency of the flexural deformation of 
these nanowires in a beam configuration via molecular dynamics simulations is obtained and 
analyzed. The simulation analysis of the deformation behavior in metallic nanowires modeled as 
atomic systems at finite temperatures is a dynamic process and is conducted using classical 
molecular dynamics. 

Prior work in the literature exists on the deformation of the Copper and Gold nanowires^"'^ and 
carbon nanotubes'^ via molecular dynamics (MD) methods, hi the present paper, the tensile 
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deformation behavior of a nanowire configuration formed from the single crystals of nickel in 
the <001> (longitudinal), <100> and <010> (transverse) directions is considered. Most of the 
current literature is focused on the tensile deformation of nanowire configurations of different 
materials with very limited and non-existent work on the bending deformation behavior of 
nanowires. In addition to this tensile deformation, flexural deformation of the Nickel nanowires 
in a beam configuration is also presented. 

Stress Deflnition in Nanoscale Deformation (Virial Stress) 

A virial stress definition is used (Zhou, 2003) (Zimmerman et. al, 2003) to describe the 
macroscopic (continuum) stress in accordance with the microscopic/nanoscale, atomistic 
quantities ' . Given the phase status of atoms, the macroscopic stress tensor in a 
macroscopically small, but microscopically large volume Q. is given by: 

1 ^. . - .. _ .      1 a afi      r\L^ 
^ * /en ^ i       ■ ■ 

where 

Ji},li      Q-^ (3) 

Here w, is the mass of the /-th molecule in Q, Xi is its position (or and P indicates Cartesian 
components), v, its velocity, Q the local average velocity, and /J, is the force on molecule i exerted 
by another molecule/. This virial stress is used to compute the stress values for the tensile and 
flexural deformation behavior in the present paper. 

Computational Model Configuration of Tensile Nickel Nanowires 

Figure 1 shows the computational model configuration of nickel nanowires employed. The 
nickel nanowires are made of Nickel FCC crystals with initial surface orientation of <100>, 
<010> and <001>. The lattice constant of faced-centered cubic (FCC) nickel crystal is J=3.52 
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Fig. 1. Configuration of Tensile Nickel Nanowires for Tensile Deformation 

The length {L) of Ni nanowires was taken to be 60J in the <001> direction for the tensile 
deformation behavior. Different cross-sectional sizes that range from 5 to 20 x for a side formed 
the cross-section of the nickel nanowire configurations. Constant velocities ±Vo are enforced on 
the top and bottom layers of the nanowires to emulate the tensile deformation. These top and 
bottom layers define the boundary layer and have identical size of 1 lattice constant, along the 
<001> crystalline direction. 

Based on the velocities over boundary layers (±Vo), the atomistic nanowire model system deform 
with a strain rate given by: 

£■ =■ 
2F„ 

(4) 

where L is the length of nanowires . , 

Different velocities were employed in the simulations to give different strain rate conditions. 
Table 1 presents the velocity of boundary layers (Fy) and the resulting strain-rate. For the 
nanoscale system, the velocity is expressed in terms of lattice-constant (J) per pico-second. 

E(1/S) 

1.67x10' 
1.67x10^ 
1.67x10^ 
1.67x10 10 

Vo (^/ps) 
5x10"* 
5x10 
5x10 
5x10" 

-3 

-2 

Table 1. Tension Velocity of Nanowires and the Resulting Strain Rate 
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Effect of strain Rate 

Figure 2 presents the tensile stress-strain behavior obtained for the two nickel nanowire 
configurations with dimensions of 5x5x60 and 10x10x60 at various strain rates {1.67x10^ - 
1.67>^10'" s'). These tensile deformation are obtained from MD simulations based on an NVE 
ensemble at temperature T=300K. It is noted that a higher strain-rate led to higher oscillations in 
the stress-strain curve due to the time dependent nature of the strain application and the 
associated dynamic stress. 

 "  Strain-rate "1.67E10 (1/s) 
  Str3in-rat«=1,ST E09 (I/5) 
™ . Strain-rats™ 1.67 EOS {I/5J 

"\ '  Strain-rate= 1,67 EOT (1/5) 

''^■^■ 

V 
^%S^^      .    r.        .    '^- 

Sliain-rjte»1.S7 E10 (l/s) 
Strain-rate- 1.37 £09 (1/s) 
Slraln-rae9= 1.67 EOS (Ks) 
Strain-rate = 1.87 E07 {tin) 

Strain Strain 

(A) 5x5x60 (B)10x10x60 
Fig. 2.   Stress-Strain Curve of Nickel Nanowires under Various Strain-rates at T=300K. 

The Young's modulus is determined from the tensile stress - strain curve for the strain s < 0.08 
using a hnear regression. Table 2 and 3 shows the Young's modulus and maximum yielding 
stress of nickel nanowires respectively under tensile loading. 

Strain-rate( e) 5x5x60 10x10x60 

1.67x10' 191.27 184.2127 

1.67x10^ 189.82 192.0556 

1.67x10^ 184.33 190.3636 

1.67x10'° 182.71 187.2973 

Table 2. Young's Modulus (GPa) of Nanowires with Various Strain-rates 

These resuhs indicate that strain rate does not significantly influence the Young's modulus and 
the maximum yield stress. 
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Max. Yielding Stress (GPa) 5x5x60 10x10x60 
1.67x10' 15.7178 15.4835 
1.67x10* 15.6100 16.6046 
1.67x10^ 16.2640 15.6100 
1.67x10'° 15.3314 17.0836 

Table 3: Maximum Yielding Stress (GPa) of Nanowires with Various Strain-rates 

Figures 3 and 4 present the progressive deformation and failure of 5x5x60 Ni nanowires for the 
strain rates 1.67x10^ and 1.67xl0'° (s"') respectively. The deformation behavior indicates that the 
yielding slip planes, cross slip and the breaking neck ,6, 12, 18 of nickel nanowires are influenced by 
the strain-rate. The two deformation configurations presented in figures 3 and 4 are an 
intermediate configuration during the deformation and the final yielding configuration. These 
figures clearly show that the strain rate influences the yielding slip planes, cross slip, and the 
breaking neck during the tensile deformation of Ni nanowires. 

V 
L. 

Fig. 3. Tensile deformation and failure of 5x5x60 nickel nanowire; strain rate = 1.67x10 (s ) 

€3 

Fig. 4. Tensile deformation and failure of 5x5x60 nickel nanowires; strain rate=l .67x 10   (s ) 

FLEXURAL DEFORMATION OF NICKEL NANOWIRES 

The flexural deformation behaviour of nickel nanowires due to flexural bending based on their 
atomistic configurations are discussed and presented next.  In particular, the deformation 
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vibration frequencies obtained from the molecular dynamics simulations are compared with the 
natural frequencies based on classical beam theory under two different boundary conditions. 

Computational Model Configuration and Analysis of Flexural Nicliel Nanowires 

Figure 5 presents the configuration of Nickel nanowire beams and the corresponding molecular 
model. The molecular model configuration is based on single crystals of Nickel in the <001> 
(longitudinal direction), <010> and <100> (transverse directions) directions and with a 
dimension of 120x10x1 cubic lattice constants (rectangular cross section with a longer span). 
Two types of boundary conditions are considered in the flexural deformation: 1. Both ends 
pinned (i.e., simply supported), 2. Both ends clamped. The nanowire beam deflects under the 
action of applied loading and when the loading force is removed, the displaced beam would try 
to return to its original position. The inertia of the beam would cause the beam to vibrate. The 
transient flexural bending dynamic behavior of the molecular configuration of Nickel nanowire 
beams are investigated and analyzed. 

The transient molecular dynamic simulations compute the new position of the atoms in the 
Nickel nanowire beam subjected to the flexural loading and the boundary constraints. The time 

increments are however significantly small in these dynamic simulations. A Mean Square 
Displacement (MSD (u(t))) is defined and used as a measure of the average distance an atom in 
the model travels over a certain time interval period. This is defined as: 

msd{u{t)) = ^Z"? (0 =^j^{rXt)-r,{Q)f 
(5) 
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Fig. 5. Configuration of Nickel and Molecular Model of Nanowire Beams for Flexural 
Deformation 
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The displacement Ui(t)=ri(t)-ri(0) is the distance traveled by molecule / over some time 

interval t, and the squared magnitude of this vector is averaged over many such time intervals. 

This MSD displacement value is used in the analysis of time dependent displacement response of 
the Ni nanowire flexural beam configuration. The dynamic displacement responses under two 
different boundary conditions for flexural bending are presented next. 

Simply Supported Nickel Nanowire Beam 

The Nickel nanowire beam configuration as shown in figure 5 is simply supported (rotations are 
possible at the ends) and is subjected to a dynamic concentrated point load at the center of the 
nanowire beam. Two different load values (F=0.01eV/A and 0.03eV/A) are analyzed. 

500000 1E+06 1.5E+06 
Timer(1e-14 sec) 

2E+06 

Fig. 6. Transient Dynamic Vertical Displacement at the Center (simply supported ends) 

The dynamic vertical displacement at the center is proportional to the loading value and 
increases with a higher magnitude of external loading. The natural frequency of the dynamic 
vibration as computed from the above displacement - time profile is however independent of the 

magnitude of external loading. The computed angular frequency from the predicted time 
dependent deflection of the molecular model of the Nickel nanowire beam shown in figure 6 is 
2.4166E+09}iL. 
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The natural frequency for the case of a simply supported beam based on classical beam theory 
analysis is given by 

/     Yl   \   El 

,pAL ^ 

Using a Young's Modulus value of E = 190 GPa (1.1859 eV/A^) obtained from the tensile stress 
strain deformation of Nickel nanowires discussed earlier, the mode 1 frequency value based on 
the classical beam theory is 2.5244E+10 Hz. This frequency as obtained from the classical beam 
theory is at least one order higher than the frequency obtained from the time dependent 
deflection using molecular dynamics simulations. The classical elastic beam theory based on 
continuum mechanics principles also indicate that the natural frequency of vibration of a simple 
supported beam is independent of the magnitude of the external loading and depends only on the 
beam cross sectional moment of inertia, cross-sectional area, length and modulus of elasticity of 
the material. The natural frequency obtained from molecular dynamics simulations for the 
loading and simply supported boundary conditions as presented in figure 6 is also independent of 
the magnitude of the external loading. 

Clamped Nickel Nanowire Beam 

The nanowire beam as discussed earlier is fixed at both ends (displacement and the rotation at 
the ends are zero) and is subjected to external loading force at the center. As before, two 
different loading values are investigated. Figure 7 presents the computed dynamic displacement 
response of the loaded center of the nanowire beam. As seen from figure 7, the dynamic 
displacement magnitude depends on the external loading value while the frequency of the 
dynamic displacement is independent of the external loading values. This is in direct correlation 
with the analytical results of natural frequency based on the classical beam theory. 

The computed angular frequency obtained from the predicted time dependent deflection of the 
clamped Nickel molecular beam shown in Figure 12 is 2.3271E+09 Hz. The frequency of 
vibration based on the classical beam theory for this case of clamped ends is given by'^""' 

CO ={K,L)\-^;   K, =4.73 

Using the same Young's Modulus for the Nickel nanowire as before, the mode 1 natural 
frequency as obtained based on the classical beam theory is 5.7225E+10 Hz. This frequency 
obtained from the classical beam theory is at least one order higher than the frequency obtained 
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from the time dependent center point load deflection using the deformation behavior from the 

molecular dynamics simulations. The classical beam theory based on continuum mechanics 
principles also indicate that the natural frequency of a clamped beam is independent of the 

external loading and depends only on the beam cross sectional moment of inertia, cross-sectional 
area, length, and modulus of elasticity of the material. This was also the case in the frequency of 
the nanowire beams obtained from molecular dynamics simulations as presented in figure 7. 
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Fig. 7. Transient Dynamic Vertical Displacement at the Center (clamped ends) 

DYNAMIC CRACK PROPAGATION IN NANOSCALE MATERIAL SYSTEMS 

Fracture and failure of simple and complex materials remain a fiindamental problem for 
engineering and research community. Metal/metal interfaces with mismatch in physical and 
mechanical properties are frequently encountered in a broad range of products of technological 
importance; examples include wear-resistant and fatigue-resistant coatings for nano-materials. In 
many of these applications catastrophic failure occur, when a crack initiated at the surface reach 
the interface between the surface material layer and the base material. 

Dynamic fracture has been studied experimentally and by large-scale atomistic simulations in 
various materials"^"^^. Molecular Dynamics modeling of deformation due to fracture provide 
time-dependent behavior of a propagating crack. The crack propagation under mode I loading in 
a Ni single crystal and a Ni-Al bimetal interface system with a crack initiated and propagating 
from the Ni surface layer towards the Ni-Al bimetal interface are presented in the present paper. 
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Analysis Methodology 

Molecular Dynamics modeling employing the embedded atom method (EAM) inter-atomic 
potential"'' '' was used to investigate properties of a (001) [100] crack system under mode I 
loading in both the Ni and Ni-Al bi-metal interface systems. The EAM functions for Ni-Ni and 
Ni-Al interactions used are the ones that were recently developed by Pun, et al^°. 

The material configuration employed for the MD simulations and analysis is a strip geometry as 
shown schematically in fig. 8 for both the Ni and Ni-Al system. Free boundary conditions were 
applied in the x and z directions and periodic boundary condition was applied in the y direction 
(with plane strain condition). The x, y and z axes are along the [100], [010] and [001] 
crystallographic directions, respectively. For the (001) [100] crack system, the crack-free 
surfaces are (001) and the crack propagates along the [100] direction. For Ni, the simulation slab 
has dimensions of 199aNi x Vawi x 62aNi with 349,125 atoms, where aNi (3.52 A°) is the lattice 
parameter of Ni. This molecular system configuration is believed to be large enough to take care 
of the long-range character of the crack strain fields. 

t 
' . 

Ni M 

SSa^i 

85a„ 99a;, 

V V 
Fig 8. Schematic of Strip Geometry for Ni and Ni-Al Bimetallic Interface 

The nanoscale Ni-Al bilayer material configuration was created and assembled from two semi- 
infinite perfect crystals of Ni and Al with an orientation relationship of [100] || [100], [010] || 

[010] and [001] || [001]. The thermodynamic and geometric factors both equally play an 
important role in determining atomic structures of bi-metallic interfaces. The two dimensions in 
the y and z directions were therefore, not chosen arbitrarily (due to lattice size mismatch of Ni 
and Al) but determined such that the strains imposed on the Ni and Al semi-infinite perfect 
crystals is minimum and the periodic boundary condition is ensured in the y direction. The Ni 
crystal has 7 periodicity-lengths in the y direction and 62 periodicity lengths in the z direction, 
whereas Al crystal has 6 periodicity lengths in the y direction and 54 periodicity lengths in the z 

74 



direction. The lengths of Ni and Al crystals in the x-direction were chosen to be 29.92 nm and 
40.095 nm, respectively. The total calculated dimensions of 70.015 x 2.464 x 21.87 nm in the 
three directions in Ni-Al were found to be comparable with the corresponding three dimensions 
of 70.048 X 2.464 x 21.824 nm in the Ni single crystal. The energy of the nanoscale bi-layer was 
first minimized using conjugate-gradient energy minimization technique. The system was than 
relaxed using MD in NPT ensemble to a pressure of 0 Bar and a temperature of 0°K. The relaxed 
semi-coherent structure showing atomic configuration at the Ni-Al interface, when viewed down 
the [100] (x) direction is shown in fig. 9. In the figure Al and Ni atoms are shown in silver and 
brown, respectively. 

Fig. 9: Atomistic structure of the Ni-Al interface viewed along [100] (x) direction. Al and Ni are 
shown in silver and brown, respectively. 

For both the Ni and Ni-Al an initial crack of length 39aNi (aNi being the lattice parameter of Ni) 
along the x-direction was introduced into the lattice by partially turning off inter-atomic 
interactions between atoms in eight consecutive (001) planes. The two middle planes constituted 
the upper and lower surfaces of the initial crack. The slab was initialized at zero temperature and 
an outward strain rate of 1x10 sec' was imposed on the outer most columns of atoms defining 
the upper fi^ee surface of the slab in the z direction. A linear velocity gradient was applied across 
the slab and that applied an increased outward strain with time in the z direction creating the 
Mode I fracture loading condition. This external loading leads to crack growth and propagation 
that can lead to eventual structural failure of the material. Molecular dynamics simulations 
presented in this work were conducted using molecular dynamics solver, LAMMPS^. 

Deformation Due to Crack Propagation 

The crack growth and propagation was studied on a (001) plane for both the Ni and Ni-Al 

nanoscale material system. The strain energy release rate (G) is the amount of energy per unit 

area that is supplied by the elastic energy stored in the system. This is calculated by integrating 
the stress-strain curve with respect to strain, ^. In the present molecular system configuration, 
this is given by 
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m 

where, ^ is the width of the strip in the z direction and '^- is the z component of the stress. The 
calculated stress-strain curves for Ni, Ni-Al and Al are shown in fig. 10. The stress for each atom 
is due to its interaction with all other atoms in the system (within the force cut-off). Atomistic 
per atom stresses, given by a "stress times volume" formulation, as implemented in LAMMPS 

were calculated and summed over all the atoms of the system to get '^- component of the stress. 

The sum was normalized by the system volume to finally compute ^=. As expected, ^- 
increases with strain to a certain value and then decreases for all the three systems. The 

maximum reached value of ^- was found to be 7.56 GPa for Ni, 4.72 GPa for Ni-Al bimetal 
system, and 3.69 GPa for Al. 
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Fig. 10: Stress-strain curves for Ni, Ni-Al and Al 

According to Griffith's criteria, a brittle crack under mode I loading propagates when  ^ 

corresponding to an applied load is equal or greater than 2 ^', where ^' is the surface energy of 
each plane of the crack. From the stress-strain curve, the calculated critical strain energy release 

rate at which the crack starts to propagate in Ni (   <^^') is 3.86 J/m^ and in Ni-Al (^^"') is 2.4 
J/m . The corresponding given values of the Griffith load fi-om the EAM potential, which is 
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twice the (001) surface energy (^0, are 3.756 J/m^ for Ni (^^') and 1.886 J/m^ for Al (^^') ^'. 

The value for the critical strain energy release rate in Ni-Al ( ^'^''^') in the present bimetal system 
is between the Griffith loads for Ni and Al. The atomistic per atom stresses, as mentioned above, 
were summed over all the atoms of the system before normalizing the sum by the system volume 

to get ^' component of the stress. In the Ni-Al bimetal interface system they were summed over 
both the Ni and Al atoms. The maximum attained stresses in the Ni, Ni-Al and Al systems as 

obtained from the simulations are in the order -'^' > -'*'"<' > ^'. The large difference in the 
maximum attained stresses (and therefore critical energy release rate) in Ni and Ni-Al is due to 

the inclusion of the per atom stresses from Al atoms in computation of '^^ for the Ni-Al system. 
The strain energy release rate, however, is related to the stress distribution around the crack tip 
rather than the stresses of the whole system. 

Temperature control, which may affect crack-tip dynamics, is not applied in this work. While the 
initial temperature of the system is nearly zero, it increases as the crack advances. However, the 
average temperature of all the three systems remained below 50°K during the entire simulations. 
The snapshot pictures at various dynamic crack propagation simulation times showing 
mechanisms of crack propagation in Ni and Ni-Al are shown in figs. 11 and 12. In both of the 
figures the atoms are colored according to the centro-symmetry parameter^", which is a scalar 
quantity designed to identify defects such as interfaces, stacking faults and dislocations. In all of 
the images, atoms with a centro-symmetry parameter (P) close to zero were removed to facilitate 
easier viewing of the defects inside the structures. The visible atoms are associated with crack 
surfaces, exterior slab surfaces (only three surfaces are shown), Ni-Al bi-interfacial layer and 
other defects created during crack motion. The atoms are colored with yellow for dislocations (P 

0.5 - 4.0), brown for stacking faults (P 4.0 - 12.0), and green for surface atoms (P > 12). The 
yellow and brown are also associated with atoms with crystallinity other than FCC. For both the 
Ni and Ni-Al, the early time sequence of the crack propagation at simulation times of 40, 45 and 
50 ps (fig. 11) show that the crack initially moves in a straight line with 'mirror' cleaved 
surfaces. The crack surfaces in Ni (fig. 12) then began to roughen starting at around 55 ps with 
crack eventually ceasing to continue further with proliferation of dislocations at the crack tip at a 
simulation time of 65 ps. In Ni-Al (fig. 12) as crack nears interface a bud at the crack tip called 
'process zone' began to grow at 55 ps along with roughening of the surfaces of the crack. The 
process zone that represents a local disorder at the crack tip shows no apparent plasticity during 
the initial brittle cleavage of the surfaces. At 65 ps, when the propagating crack tip lie roughly at 
8.5 nickel lattice spacing (8.5 aNi) from the interface, the dislocations start emanating from the 
interfacial bi-layer and they start traveling away from the interface towards the bulk Al. When 
compared to Ni the crack tip in Ni-Al at 65 ps lags behind the crack tip in Ni by about 15.5 
nickel lattice spacing (15.5aNi). 
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The snapshot pictures showing an enlarged and a close-up view of the defect structures formed at 
the crack tip after initiation of plastic deformation at 65 and 70 ps in Ni are shown in fig. 13. The 
atoms are colored as described above with yellow for dislocations, brown for stacking faults, and 
green for surface atoms. The snapshots at 65 and 70 ps show formation and evolution of stacking 
faults associated with nucleation of dislocations from the crack tip. The stacking faults are 
bounded by dislocation loops, which start at the crack tip. The appearance of dislocations at the 
crack tip suggests a dynamic brittle-to-ductile transition which leads to a crack arrest in the Ni. 
When the surfaces of the crack began to roughen atomically, the crack attains a velocity of 
approximately one third of the Rayleigh wave speed. A plot of crack tip position versus 
simulation time for Ni is given in fig. 15. The initiation of the crack propagation is taken as the 
zero simulation time. The crack tip position is determined by comparing the relative distance 
between atoms of the upper and lower planes of the crack with a value for which the bond is 
believed to be broken. The slope of the linear part of the crack tip position versus simulation time 
gives velocity of the crack propagation (940 m/sec) to be about one third of the Rayleigh wave 
speed (using Rayleigh speed of 2797 m/s^^). This crack surface roughening has been identified as 
the onset of an intrinsic dynamical instability of the brittle fracture process by previous 
investigators^^' ^'. 

In Ni-Al bimetal system as discussed above, the crack surfaces initially grow brittle with crack 
surfaces getting roughened at around one-third of the Rayleigh wave speed. However, two 
regimes of crack propagation velocities were observed in this case (fig. 16). The first (960 m/sec) 
corresponds to one-third of the Rayleigh wave speed with which the crack starts to propagate 
after an initial transient time; the second (350 m/sec) regime corresponds with crack growth 
getting decelerated as it nears the interface after the onset of crack surface roughening and 
growth of the process zone at the crack tip. The snapshots showing structural evolution with time 
at 67, 68, 69 and 70 ps as the growing crack approaches the interface are shown in fig. 14. The 
atoms are again colored by centro-symmetry parameter with yellow for dislocations (P 0.5 - 
4.0), brown for stacking faults (P 4.0 - 12.0), and green for surface atoms (P > 12). As the crack 
growth approaches the bi-metal interface, dislocations start emanating from the interfacial bi- 
layer and they start traveling away from the interface towards the bulk Al. At 68 ps, the 'process 
zone' at the crack tip start interacting with defects at the interface that eventually blunts the crack 
tip and ceases further crack growth ultimately prohibiting crack from propagating beyond the Ni- 
Al interface. However, the system continues to dissipate elastic energy through continued 
creation and motion of dislocations in Al. The snapshots in fig. 14 also show formation and 
evolution of stacking faults associated with nucleation of dislocations from the interfacial bi- 
layer. The stacking faults, which in this case start at the interfacial layer, are bounded by the 
dislocation loops (colored in yellow in fig. 14). 
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Summary and Concluding Remarks 

The extreme smaller lengths at the nano level require analysis methodologies based on three- 
dimensional atomistic deformation characteristics for nanoscale material systems. In the field 
nanomechanics, principles of mechanics are employed in conjunction with interatomic potentials 
capturing the molecular forces, atomistic level interactions, and offer a potential to understand 
the associated deformation behavior at nanoscale. The present paper presented the tensile and 
flexural behavior of Nickel nanowires based on the dynamical behavior of their atomistic 
structures. The results clearly elucidate the applicability of the nanomechanics based atomistic 
modeling for the understanding of the behavior of such nanowires under mechanical loading 
conditions. 
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The atomistic modeling simulations and configurations were also employed to understand the 
dynamic crack propagation behavior in a nanoscale Nickel single crystal and a Nickel-Aluminum 
nanoscale bimetal interface. The embedded atom method interatomic potential are used to 
investigate the behavior of (001) [100] crack system under mode I loading. The dynamic crack 
propagation for Ni show an initial brittle crack propagation followed by a roughening of the 
crack surfaces at one-third of the Rayleigh wave speed. In Ni-Al, the crack surfaces initially 
grow brittle. Two regimes of crack propagation velocities were observed in this case with crack 
getting decelerated as it nears the interface. Further dynamic analysis of the crack propagation 
indicated a cease in the crack propagation in Ni due to a brittle to ductile transition. In Ni-Al 
bimetal interface system, as the crack approaches the interface, a process zone representing local 
disorder at the crack tip was observed to start growing and interacting with interfacial defects 
that eventually results in a blunting of the crack tip. 

The fiindamental understanding of nanoscale crack propagation evolving into multi-scale nano to 
continuum analysis are essential to optimize and ensure the safety and reliability of engineered 
structures with nanocoatings, when a crack initiated at the surface reaches the interface between 
the surface nanocoating material layer and the base material. 
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Fig.l 1: Simulation snapshots showing early-time sequence of crack propagation in Ni (left) 
and Ni-Al (right) at 40, 45 and 50 ps. Atoms are colored by centro-symmetry parameter.      gi 
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Fig. 12: Simulation snapshots showing late-time sequence of crack propagation in Ni 
(left) and Ni-Al (right) at 55, 60 and 65 ps. Atoms are colored by centro-symmetry 
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Fig. 13: Simulation snapshots showing crack propagation in Ni at 60, 65 and 70 ps. 
Left panel show three exterior slab faces. Right panel show a close-up view of the 
defect structures. Atoms are colored by centro-symmetry parameter with yellow for 
dislocations, brown for stacking faults and green for surface atoms. 83 
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Fig. 14: Simulation snapshots showing crack propagation in Ni-Al at 67, 68, 69 and 70 ps. 
Atoms are colored by centro-symmetry parameter with yellow for dislocations, brown for 

stacking faults and green for surface atoms. 84 



Fig. 15: Crack tip position versus simulation time for Ni. 
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Fig. 16: Crack tip position versus simulation time for Ni-Al. 
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ABSTRACT 

Nanoscale multilayer metallic composites (NMMCs) contain significantly high volume fraction 
of interfaces and exhibit strengths much higher than that of bulk materials composing the 
structures. This strengthening has been attributed to the presence of interfaces between materials 
that differ in properties such as elastic modulus, lattice parameters, slip plane orientations and act 
as barriers to propagating dislocations. This paper presents a review of two major factors that 
influence the properties and behavior of the NMMCs: Interface structure, 
Strengthening/Deformation mechanisms. The influence of semi-coherent Ni (nickel) - Al 
(aluminum) interface on Mode-I crack propagation in nanoscale Ni-Al bilayer composite under 
tensile and cyclic loading conditions analyzed through computational modeling is discussed. 
Results for nanoscale Ni-Al bilayer composite showed initial brittle crack propagation with 
planar cleavage of atoms followed by crack surfaces getting roughened when crack propagation 
speed is about one-third of Rayleigh wave speed. In case of Mode-I tensile cyclic loading, crack 
was found to propagate either by fatigue cleavage of the atoms or by void nucleation in the 
regions near the crack tip, depending on the value of maximum strain applied. In Ni-Al bilayer 
composite studied, as crack approached the interface, dislocations start emanating from the 
interfacial layer. The creation of voids was found to slow down crack growth in both the Ni and 
Ni-Al at higher maximum applied strain during cyclic loading. Plastic deformation was found to 
dominate crack propagation during tensile loading that resulted in a slower crack growth than 
cyclic loading. In all cases, presence of semi-coherent interface in the nanoscale Ni-Al bilayer 
composite was found to prohibit crack from propagating beyond the interface. 

KEYWORDS: Nanoscale metallic multilayers, interfaces, molecular dynamics, bimetallic 
nanolayer, crack propagation. 

INTRODUCTION 

Nanoscale multilayer metallic composites (NMMCs) consisting of alternating nanometer (< 100 
imi) thick layers of two or more materials on a suitable substrate have been of keen interest to the 
materials community. Their potential for unique and technologically important combinations of 
properties that emerge as the individual layer thickness is reduced to the nanometer-scale make 



them uniquely multifunctional materials. NMMCs exhibit high strengths, which at room 
temperature can approach one-half or one-third of the estimated theoretical strengths of 
constituents'"^ improved ductility^ '', and good thermo-mechanical stability of interfaces* ^ '. In 
addition to mechanical properties, novel electronic, magnetic and optical behaviors that result 
from nanolayering, make NMMCs attractive for applications such as hard/wear resistant 
coatings, diffusion barrier coatings, x-ray optical elements, magnetic recording media and heads, 
and micro and nanotechnological devices/systems (MEMS and NEMS)'""'^. Besides coatings on 
substrates, NMMCs also find applications as self-supported high strength foils for a variety of 
structural applications. Multilayer technologies can also have a profound impact on 
manufacturing processes by decreasing the amount of machining necessary between raw 
materials and the finished products. 

The mechanical properties and behavior of metallic multilayers has been the subject of extensive 
research activity in the past decade. Nanoscale multilayer metallic composites contain extremely 
high densities of interfaces, and achieve very high strength levels. The high densities of 
interfaces at nanoscale are a contributing factor to these very high strength levels. Interfaces 
between dis-similar material layers that differ in properties such as elastic modulus, lattice 
parameter, defect energies, and slip plane orientations play a crucial role in determining the 

material strength at nanoscale. The dissimilarities in the properties between the material layers 
act as a strong barrier to slip transmission'*'"'*. In addition, as the layer thicknesses are reduced 
from micrometer to the nanometer scale, the strengthening mechanisms transition from the Hall- 
Petch model of dislocation pileups at the interface to the Orowan model of single dislocation 
bowing between layers, and finally to the interface crossing mechanisms"'. The increased 
strength achieved in nanoscale multilayers can be attributed to the resistance of the interface to 
the transmission of a single glide dislocation. This single glide dislocation is considered to be a 
critical unit process at layer thickness less than 5 nm, and largely determines the maximum 
strength achieved in nanoscale multilayers. The maximum strength is dependent upon the atomic 
structures and properties of the interface. These differences in the atomic structure and properties 
of the associated nanoscale material layers also lead to different types of interfaces between the 
material layers and their associated strengthening mechanisms. 

Theory and multi-scale modeling analysis        " "    (atomistic modeling, elasticity-based 
dislocation theory, dislocation dynamics simulations and crystal plasticity modeling) along with 
experiments have been used to elucidate a variety of novel aspects of the strength, plasticity and 
deformation of NMMCs. The deformation and behavior of NMMCs are influenced by the 
crystallographic structures and properties of the interfaces that influence the strength; layer 
thicknesses and the associated strengthening and deformation mechanisms at different length 
scale thicknesses. All these factors influence the properties and deformation behavior of 

89 



NMMCs, including their tensile and fatigue properties, response to large plastic deformation, and 
thermal stability. 

The discussions present a review of the major factors that influence the properties and behavior 
of the NMMCs: Interface structure, Strengthening/Deformation mechanisms. The interface 
structure between two dissimilar metallic materials in NMMCs influence the deformation 
behavior under Mode-I crack propagation. Mode-I crack propagation in a semi-coherent metallic 
Ni (nickel)-Al (aluminum) bilayer under tensile and cyclic loading conditions analyzed through 
computational atomistic Molecular Dynamics (MD) modeling is discussed. The discussions in 
this paper are organized as follows. Major factors that influence the properties and behavior of 
NMMCs, in particular. Interface structure, Strengthening/Deformation mechanisms are presented 
in section 2 and 3. This is followed by brief discussions on prior literature on the atomistic level 
modeling to study the nanoscale metallic structures/interfaces in section 4 followed by 
discussions on the analysis of dynamic crack propagation in nanoscale Ni-Al bilayer composite. 

INTERFACE STRUCTURE 

The mechanical properties and deformation mechanisms of NMMCs depend strongly on the type 
of metallic materials constituting the multilayers, and on the type of interfaces that form between 
the two material layers ^". Interface act as barriers to propagating dislocations and cause strain 
hardening of the nanoscale multilayer materials. Depending on the materials involved in the 
multilayers, interfaces in NMMCs can generally be classified into the following four categories: 
coherent, semi-coherent; incoherent and hybrid interfaces. 

Coherent and Semi-Coherent Interfaces 

Coherent interfaces form when the two metals have the same type of lattice structure (e.g., both 
face-centered cubic (fee)) and the difference in the lattice parameters is relatively small, in the 
order of a few percentages, e.g., the interface between fcc/fcc Cu-Ni system with cube-on-cube 
orientation relationship'^"'^ "^ '^ ^^. In such systems, the two layers are constrained so that no 
misfit dislocations can form to relax the stresses due to lattice mismatch, resulting in the 
development of high stresses along the interface (coherency). 

Semi-coherent interfaces form between metals with the same lattice type but larger mismatch in 
the lattice parameters. Such interfaces are characterized by a network of misfit dislocations that 
are needed in order to accommodate the large lattice mismatch at the interface e.g., the interface 
between the fcc/fcc Cu-Ag system with cube-on-cube orientation'^. In this case misfit 
dislocations relax the long-range coherency stresses and the interface between the misfit 
dislocations remains coherent. 
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In most multilayers comprised of metals with the same lattice type and a small mismatch 
however, both coherent and semi-coherent interfaces may form depending on the thickness of the 
individual layers^"*. For relatively thin layers, fully coherent interfaces are more favored 
energetically; however, a loss of coherency usually occurs when the layer thickness exceeds 
some critical value. In the case of coherent and semi-coherent interfaces, where both materials 
have the same crystal structures, slip planes and directions are nearly continuous across the 
interface and such interfaces are therefore labeled transparent. 

Strengthening in nanolayered composites with coherent interfaces is usually attributed to forces 
on glissile dislocations at or near interfaces caused by lattice mismatch (coherency), elastic 
mismatch (Koehler) and changes in core structure on passing from one layer to the other 
(chemical). However, research suggest that for materials with coherent interface, the most 
important effect on its strength is derived from the coherency strains''' '^. Earlier atomistic 
simulations performed by Hoagland et al.'^"°, showed that the peak strength in coherent Cu-Ni 
multilayers at layer thickness below 5 run may be interpreted in terms of the high coherency 
stresses that must be overcome for single dislocation transmission. 

In multilayers with semi-coherent interfaces, pre-existing networks of misfit dislocations often 
dominate plasticity . The semi-coherent interfaces act as barriers to slip because of the residual 
coherency stresses in areas between the misfit dislocations. Other factors acting as barriers to slip 
include, the interaction between misfit dislocations and glide dislocations, and the creation of a 
step when crossing occurs. The core structures of misfit dislocations play an important role in 
affecting the way that misfit dislocations interact with the glide dislocations. Misfit dislocations 
may be very narrow in the plane of the interfaces, as they are in Cu-Ni, or wide, as in Cu-Ag. 
The wide core, closely spaced misfit dislocations in the latter case (Cu-Ag) effectively remove 
local coherency stresses, promote dislocation mobility and lead to weak interfaces'^. 

Incoherent Interfaces 

Incoherent interfaces form between materials with different lattice structures, where the slip 
planes and slip directions are discontinuous across the interface leading to negligible coherency 
stresses in the system. A typical example of the incoherent interface is an interface between 
fcc/bcc Cu-Nb system with Kurdjumov-Sachs (KS) orientation relationship'^, where interface 
form along the close packed planes of Cu and Nb (111) and (110), respectively and the Cu and 
Nb layers are oriented with respect to each other such that a <110> direction of Cu is parallel to a 
<111> direction of Nb in the interface plane (the interface plane is Cu//Nb ''' '^ and within the 
interface plane, <110>Cu//<l 1 l>Nb). Atomic relaxations in the interface lead to local patches of 
high and low atomic coordination and periodic arrays of defects. Although periodic structures 
might occur, they do not sustain the large stresses that can develop in both the coherent and 
semicoherent interface systems (where two metals have the same crystal structure and the slip 
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planes and directions are continuous across the interface). Due to discontinuity of the shp planes 
and directions, incoherent interfaces are also called opaque. The crystallographic discontinuity of 
slip systems becomes a major factor that may inhibit slip transmission across the interfaces in 
these systems. 

Computational modeling simulations using embedded-atom potentials have been used to study 
atomic structures of Cu-Nb incoherent interfaces'^ "' '^. For the KS orientation relationship, 
atomistic simulations have identified a variety of possible atomic structures of Cu-Nb interface 
with nearly same formation energies. The atomic structure, referred to as KSl, is formed by 
directly combining the two semi-infinite perfect crystals of Cu and Nb according to the KS 
orientation relationship"' '*. The atomic structure, referred to as KS2, is formed by inserting a 
strained monolayer of Cu ^^ as an intermediate layer between the adjoining crystals in the KSl 
interface. The inserted monolayer, a perfect Cu ^^ plane, is strained in a way so as to remove the 
patches of under coordination present in the KSl interface"' "^, thereby stabilizing the interface 
configuration even though it contains a strained Cu monolayer. Insight gained from the analysis 
of the KS2 interface structure has been applied to predicting other pairs of materials that may 
also form interfaces that lead to improved radiation damage resistance, such as those observed in 
Cu-Nb multilayer thin-film composites. 

The shear resistance and sliding mechanism of interfaces between Cu-Nb layered composites, as 
a function of applied in-plane shear direction and different interface atomic structures have also 
been studied using atomistic simulations"'. These simulation results indicate that the shear 
strengths of Cu-Nb interfaces are significantly lower than the theoretical estimates of shear 
strengths for perfect crystals, strongly anisotropic, spatially non-uniform, and strongly dependent 
on the atomic structures of interfaces. The mechanism of interface sliding involves glide of the 
interfacial dislocation loops that nucleate fi^om the weakest regions of the interface. 

The low shear strength of the interface and the large in-plane anisotropy of shear strength have 
significant implications for the interactions of glide dislocations, from either copper or niobium 
crystal, with the interfaces. In addition to the geometric factor of slip discontinuity in Cu-Nb 
layered composites, atomistic simulations reveal several important factors, directly related to the 
weak interfaces that hindered transmission of dislocations across the interfaces"**. The stress field 
of a glide dislocation approaching the interface exerts enough stress to locally shear the weak 
interfaces, resulting in its (dislocation's) absorption and spreading of its core in the interface 
plane, thereby hindering its transmission. 

DEFORMATION/STRENGTHENING MECHANISMS 
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Experimental observations of high yield strengths in nanoscale layered materials cannot be 
explained by a simple extrapolation of scaling laws such as the Hall-Petch relationship. 
Deformation mechanisms in these materials depend on layer thickness, X. When the layer 
thickness is on the order of several tens to several hundreds of nanometers (> 50 nm), the Hall- 
Petch effect is considered to be the main reason for the material's strength increase' ^^"'*^. 
However, when the layer thickness becomes less (< 50 nm) than the distance required for 
dislocations to interact and form substructures in bulk materials, strength does not obey the Hall- 
Petch relation. The Hall-Petch model is based on dislocation pile-up mechanisms. Creation of 
dislocation pile-ups, at A. < 50 nm becomes difficult and essentially new mechanisms that are 
based on interactions of single dislocations and interfaces come into play. Interfaces becomes the 
controlling parameter of plasticity in NMMCs "* '^"-° "^ '^ '^ "^K 

The flow strength as a function of the thickness of the individual layers, X, for Cu-Cr, Cu-Nb, 
Cu-Ag, Cu-Ni, and Cu-304SS bi-material systems is shown in figure 1^°. The data fit a Hall- 
Petch relation {a ~ X'"") between strength and layer thickness for A. > 50 nm. The Hall-Petch 
model is based on dislocation pile-ups at layer interfaces. Stresses at the tip of the pile-up are 
amplified by the number of dislocations in the pile-up and possesses a mechanical advantage that 
enables large-scale deformation at low applied stress levels. For smaller thicknesses, a < 0.5, 

where a is the X - exponent in the empirical Hall-Petch relation, a = k >t"" + ko. As the layer 
thickness is reduced, the number of dislocations in the pile-up is reduced. In the limit where the 
transfer of slip across interfaces is left to single dislocation, the mechanical advantage is lost 
requiring large applied stress to accomplish transfer across the interface. This accounts for 
transition from the Hall-Petch to the plateaus for A, < 50 nm, and a ~ 0, in fig.l. The hardness 
data of Al-Nb and Cu-Va that is reported in reference ^ also show similar trends. The differences 
in the mechanical properties, in particular the Hall-Petch slope and the peak hardness for several 
bi-material systems as reported in reference were interpreted in terms of the differences in 
shear moduli, heat of mixing, and characteristics of interfaces. 
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Fig. 1. Hardness as a function of layer thickness for several nanolayered composites (at larger 
layer thickness the hardness is approximately linear with X'^'') [20]. 

For I. approximately less than 50 nm, deformation occurs by confined layer slip (CLS) that 

involves propagation of single dislocation loops parallel to the interfaces in both layers. 
Dislocations are confined to individual layers since the interface barrier stress to slip 
transmission is higher than the CLS stress. The CLS stress, which increases as X decreases, 
eventually exceeds the interface barrier strength denoted as T to the transmission of a single 
glide dislocation at X < 5 nm and the deformation mechanism changes from CLS to interface 

* 
crossmg of single dislocations. T is defined as the interface crossing stress, without the 
mechanical advantage of a dislocation pile-up. 

The interface-controlled plasticity (interaction of single dislocations with interfaces) of 
nanolayered materials constitute a complex problem, because it involves the details of the 
creation of dislocations at interfaces, their transmission through the interface and processes of 
storage and relaxation at the interface. An extensive use of theory and modeling (discussed in 
part in section 2) has been made to elucidate the intricate nature of these complexities. 

Hoagland et al developed dislocation models using theory and simulations to interpret the length- 
scale dependence of strengthening mechanisms in a fcc/bcc Cu-Nb system with incoherent 
interfaces over a layer thickness ranging from micrometers to less than a nanometer^'. A 
dislocation pile-up-based Hall-Petch model was found applicable at the sub-micrometer length 
scales and the Hall-Petch slope was used to estimate the peak strength of the multilayers. The 
experimentally measured Hall-Petch slope correlated well with the peak strength of the 
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multilayer, -2.6 GPa that was observed at a layer thickness of 1 nm, where the Hall-Petch 
extrapolation is not valid. 

ATOMISTIC MODELING OF NANOSCALE METALLIC INTERFACE STRUCTURES 

Atomistic modeling has been used to study interface structure/properties and its effect on the 
mechanisms of interactions of artificially introduced single dislocations with the interfaces in 
NMMCs. It has also been used to elucidate details of plastic deformation and the underlying 
deformation mechanisms during nanoindentation of NMMCs, where dislocations repeatedly 
nucleate under indenter and then move and interact with interfaces. Medyanik and Shao (2009) "^^ 

have modeled indentation of a Cu-Ni bilayer with coherent (111) interface by indenting it 
both from the Cu and the Ni side. The mechanisms of dislocation- interface interaction observed 
in the two cases are found to be quite different. Interfacial stacking fault formation is observed 
only when dislocations propagate from Ni into Cu. In addition to deformation, they also analyze 
the effects of dislocation-interface interaction on the overall strengthening of the material. 

Using molecular dynamics techniques, Saraev and Miller''^ studied the nano indentation of 
copper single crystals coated by a thin epitaxial nickel layer forming a semi-coherent interface. 

They observed that the evolution of plastic deformation depends strongly on the structure of the 
interface, in particular, on the initial position of misfit dislocations with respect to the indenter. 
Depending on the position of the misfit dislocations, either dislocation pile-up or dislocation 
transmission through interface is observed. They also observed a significant strengthening of 
copper films by thin nickel coatings. 

Shao et al studied dislocation nucleation and propagation during nanoindentation in a Cu-Nb 
bi-layer with incoherent interface using atomistic simulations. The interface acts as a very strong 
barrier to dislocation propagation. When dislocations reach the interface fi-om the Cu side, an 
interfacial shear is observed and no dislocations are transmitted across the interface from Cu into 
Nb even at very deep indentation depth. However, when indenting from the Nb side, although a 
considerable amount of interfacial shear occurs, transmission of dislocations was found to occur 
from Nb to Cu. 

As discussed above, atomistic modeling techniques such as molecular dynamics are effective in 
understanding the effect of interface/structures on the deformation behavior including crack 
propagation in nanoscale multilayer metallic composites. The next section presents and discusses 
the raode-I dynamic crack propagation in a Ni-Al bimetallic nanolayer. 
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DYNAMIC CRACK PROPAGATION IN NANOSCALE NI-AL BILAYER COMPOSITE 

Most studies of crack propagation in nano-scale regime have concentrated mainly on the fracture 
behaviors under tensile loading of either single crystal materials ^'' ^' or of nano-structures 
containing grain boundaries and interfaces between similar types of materials ^^' ^'*. Only few 
studies have considered crack propagation in nano-structures with interfaces between materials 
of dissimilar types ^^' ^^. Furthermore, very few studies have been performed at atomistic level to 
investigate material behaviors under cyclic loading '^' ^^. 

Nanoscale bilayer metallic composites with mismatch in physical and mechanical properties 
between two metals across the interfaces are frequently encountered in a broad range of 
applications of technological importance; for example in micro-electro-mechanical and nano- 
electro-mechanical systems. The mechanical rehability of MEMS/NEMS, in service, depends 
strongly on their resistance to fracture in the presence of small numbers of cracks formed during 
their production and operation cycles. 

Among various atomistic simulation methods, molecular dynamics (MD) has become a method 
of choice to study fracture at the atomic scale, as it can provide time-dependent information and 
allows for the inclusion of strain rate and temperature as meaningful variables in the analysis. In 

the present work, molecular dynamics simulations is used to investigate crack propagation under 
cyclic loading in a Ni single crystal and a Ni-Al bi-metallic interface system, in which a crack 
initiates and propagates from the Ni surface layer towards the Ni-Al bi-metallic interface. This 
Mode-I dynamic crack growth and propagation under tensile and cyclic loading conditions are 
discussed. 

Modeling Methodology 

Molecular dynamics simulations using embedded atom method (EAM) inter-atomic potential 
were empoyed to investigate crack propagation in both the Ni and Ni-Al bi-metallic interface 
system. The selection of the embedded atom method (EAM) for the energy fiinctional in 
molecular djTiamics simulations is a popular choice for the fee close-packed metals. The EAM 
potential developed by Pun, et al ^^ was used to defme inter-atomic interactions between the Ni- 
Ni and Ni-Al atoms. For dynamic crack propagation in Ni-Al bilayer composite, it is critical that 
the potential reproduces the elastic constants as well as surface energies very accurately and the 
potential used has been fitted to the elastic constants, surface energies and to other bulk and 
surface properties of Ni and Al. 
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Bi-Metallic Nanolayer 

The schematics and atomistic structures of the simulation geometry used in the present work for 
the Ni and Ni-Al are shown in figure 2. The x, y and z axes are along the [100], [010] and [001] 
crystallographic directions, respectively. The (001) [100] crack system was studied in both the 
configurations. For the (001) [100] crack system, the crack-free surfaces are (001) and the crack 
propagates along the [100] direction. An initial crack of roughly 1/5 the system length is 
introduced by partially turning off inter-atomic interactions between atoms in the eight 
consecutive (001) planes. The two middle planes constitute the upper and lower surfaces of the 
initial crack. The crack plane is parallel to the xy plane. Free boundary conditions were applied in 
the X and z directions and periodic boundary condition was applied in the y direction (with plane 
strain condition). Molecular dynamics simulations presented in the work were conducted using 
molecular dynamics program, LAMMPS''". 

For the single crystal Ni, the simulation slab had dimensions of 199aNi x 7 ani x 62 awi with 
349,125 atoms, where awi (3.52 A") is the lattice parameter of Ni. This molecular system 
configuration is believed to be large enough to take care of the long-range character of the crack 
strain fields. The Ni-Al bi-layer model was created and assembled from the two semi-infinite 

perfect crystals of Ni and Al with an orientation relationship of [100] || [100], [010] || [010] and 
[001] II [001]. The two dimensions in the y and z directions were not chosen arbitrarily (due to 
lattice size mismatch of Ni and Al) but determined such that the strains imposed on the Ni and Al 
semi-infinite perfect crystals is minimum, and also periodic boundary condition is ensured in the 
y direction. The total calculated dimensions of 70.015 x 2.464 x 21.87 nm in the three directions 
in the Ni-Al were found to be comparable with the corresponding three dimensions of 70.048 x 
2.464 X 21.824 nm in the Ni single crystal. The energy of the bi-layer was first minimized using 
conjugate-gradient energy minimization technique. The stresses were than relaxed using MD in 
NPT ensemble to a pressure of 0 bar and a temperature of 0 °K. 

Ni Al 

I 
(a) (b) 

Fig. 2. (a) Schematic of geometry for Ni; (b) Schematic of geometry for Ni-Al bi-layer nanoscale 
metallic composite. 
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RESULTS AND DISCUSSIONS 

Mode I Uniform Loading 

The crack growth and propagation was studied on a (001) plane for both the Ni and Ni-Al. 

The strain energy release rate (G) is an important quantity in the analysis of crack propagation. 
This is the amount of energy per unit area that is supplied by the elastic energy stored in the 
system. It can be calculated by integrating the stress-strain data with respect to strain, ^ . In the 
present molecular strip system, this is given by 

where, w is the width of the strip in the z direction and o-.- is the z component of the stress. The 
stress for each atom is due to its interaction with all other atoms in the system (within the force 
cut-off). Atomistic per atom stresses, a stress x volume formulation, as implemented in 
LAMMPS were calculated and summed over all the atoms of the system to get o-^ component of 

the stress. «■ increases with strain to a certain value and then decreases for all the three systems. 
The maximum reached value of '^^ was found to be 7.56 GPa for Ni, 4.72 GPa for Ni-Al and 
3.69 GPa for Al. 

According to Griffith's criteria, a brittle crack under mode I loading propagate when G 

corresponding to an applied load is equal or greater than l^s, where J'* is the surface energy of 
each plane of the crack. The calculated critical strain energy release rate from the stress-strain 
curve at which the crack starts to propagate in Ni (G,«) is 3.86 J/m' and in Ni-Al (G.V.„) is 2.4 
J/m . The corresponding given values of the Griffith load from the EAM potential, which is 

twice the (001) surface energy (r.), are 3.756 jW for Ni («.,) and 1.886 jW for AI (G„) ^\ The 
snapshot pictures showing an enlarged and a close-up view of the defect structures formed at the 
crack tip after initiation of plastic deformation at 50 and 70 ps in Ni and Ni-Al are shown in 
figure 3. The atoms are colored in these figures with yellow for dislocations, brown for stacking 
faults, and green for surface atoms. The snapshots at 70 ps show formation and evolution of 
stacking faults associated with nucleation of dislocations from the crack tip. The stacking faults 
are bounded by dislocation loops, which start at the crack tip. The appearance of dislocations at 
the crack tip suggests a dynamic brittle-to-ductile transition which leads to a crack arrest in the 
Ni. When the surfaces of the crack began to roughen atomically, the crack attains a velocity of 
approximately one third of the Rayleigh wave speed. 
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Fig. 3. Snapshots of crack propagation in Ni and Ni-Al Bi-metallic nanolayer 

In Ni-Al bimetal system, the crack surfaces initially grow brittle with crack surfaces getting 
roughened at around one-third of the Rayleigh wave speed. As the crack growth approaches the 
bi-metal interface, dislocations start emanating from the interfacial bi-layer and they start 
traveling away from the interface towards the bulk Al. As the crack nears the bi-metal interface, 
the 'process zone' at the crack tip start interacting with defects at the interface that eventually 
blunts the crack tip and ceases fiirther crack growth ultimately prohibiting crack from 
propagating beyond the Ni-Al interface. However, the system continues to dissipate elastic 
energy through continued creation and motion of dislocations in Al. The snapshots in figure 2(b) 
for Ni-Al also show formation and evolution of stacking faults associated with nucleation of 
dislocations from the interfacial bi-layer. The stacking faults, which in this case start at the 
interfacial layer, are bounded by the dislocation loops (colored in yellow). Further discussions 
and details are presented in ^^. 

Cyclic Loading 

Cyclic loading was applied in a strain-controlled marmer at a strain rate of 2.29x10^ s"'. To 
simulate fatigue failure in a small number of cycles, the structures were subjected to maximum 
strains (Cmax) larger than those required for initiating crack propagation in Ni and Ni-Al. The 
loading pattern applied to the two systems with a load ratio of 0.85, and two different maximum 
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applied strains (Cmax) of 0.046 is shown in figure 4. A high value of load ratio (emin / Cmax = 0.85) 
was used to prevent the inner faces of the crack from contacting each other during unloading. 
Before applying cyclic load the two systems were subjected to initial tensile strains of 0.039 for 
Cmax of 0.046. 

The slabs were initialized at zero temperature and the outward strain rate of 2.29x10^ s"" was 
imposed on the outer most columns of atoms defining the upper free surfaces of the slab in the z 
direction. A linear velocity gradient was applied across the slab resulting in an increased outward 
strain with time in the z direction. After loading to a given maximum strain (Cmax) the directions 
of the velocities and the velocity gradient were reversed unloading the system to reach the 
minimum strain (Cmin). The atom velocities were initiated in the required direction at the 
beginning of each loading and unloading half cycle to alleviate the stress wave overlap that could 
arise from the high rate of deformation. The loading and unloading cycles lead to the crack 
growth and propagation and eventual structural failure of the materials. 

The crack growth and propagation were studied on the (001) plane for the two systems. 
Illustrative pictures after various loading cycles (and Cmax) showing mechanisms of crack 
propagation for both Ni and Ni-Al are shown in figure 4. In all of the figures discussed, the 
atoms are colored according to the centro-symmetry parameter, which is a scalar quantity 
designed to identify defects such as interfaces, stacking faults and dislocations. In all of the 
images, atoms with a centrosymmetry parameter close to zero are removed to facilitate easier 
viewing of the defects inside the structures. The visible atoms are associated with crack surfaces, 
exterior slab surfaces (only three surfaces are shown), Ni-Al bi-interfacial layer and other defects 
created during crack propagation. The atoms are colored with yellow for dislocations, brown for 
stacking faults, and green for surface atoms. The yellow and brown are also associated with 
atoms with crystallinity other than the fee. 

Fig. 4. Strain controlled loading pattern applied to Ni and Ni-Al nanolayer 
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Case 1: Maximum Strain (Cmax) = 0.046 

For the maximum applied strain emax of 0.046, the snapshot sequence of the crack propagation 
during fatigue cycles 1 and 3 for Ni and Ni-Al (figure 5(a) and 5(b)) show that the crack in both 
systems at lower e^ax move in a straight line with fatigue cleavage of atomic bonds in the crack 
plane. The crack growth in Ni however, stops after 9 cycles and crack length fluctuates at around 
645 angstroms for the next 20 fatigue cycles. The dislocations nucleate from the crack tip during 
the 29' fatigue cycle. For Ni-Al, the propagating crack reach the interface during the 3'^'* fatigue 
cycle. When crack reach the interface, dislocations start emanating from the interfacial bi-layer 
(figure 5(b)). With continued cyclic loading little changes in the defect structures that form, 
when crack hit the interface, were observed. 

Ni Ni - Al 
(b) After 3 fatigue cycles 

Fig. 5. Crack propagation in Ni and Ni-Al metallic nanolayer (case 1) 

Case 2: Maximum Strain (Cmax) = 0.057 

The snapshot sequence of the crack propagation for the maximum applied strain Cmax of 0.057 
during loading cycles of 3,7,9 and 10 for Ni and 2,3,4 and 5 for Ni-Al are shown in figures 6 and 
7. With higher applied strain, the crack in both Ni and Ni-Al propagate by nucleation of voids in 
the region near the crack tip. The enhanced plastic deformation at the higher applied strain leads 
to nucleation of voids in the two systems. In Ni, the dislocations nucleate from the crack tip 
during the 10' loading cycle as shown in Figure 6 (d) that travels away from the crack tip with 
continued cyclic loading. In Ni-Al, when the crack reaches the interface during S''' cycle, 
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dislocations start emanating from the interfacial bi-Iayer and start traveling away from the 
interface towards the bulk Al. Figure 7 clearly illustrates this behavior. 

a)   3 cycles b) 7 cycles 
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c) 9 cycles d) 10 cycles 

Fig. 6. Crack propagation in Ni single layer (case 2) 

The total crack length versus the number of cycles at two different values of the applied 
maximum strains for both the Ni and Ni-Al are shown in figure 8. The crack in Ni propagates 
faster when compared to the crack in Ni-Al. However, the crack in both the Ni and Ni-Al at 
higher applied maximum strain (Cmax = 0.057) propagates slower when compared to its 
propagation at lower maximum strain value of emax (0.046). The present study indicates that the 
creation of voids at higher maximum strain loading slows down crack propagation in both the Ni 
and Ni-Al. 
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Fig. 7. Crack propagation in Ni-Al bilayer composite 
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Fig. 8. Crack growth comparison at two different values of maximum applied strain for Ni and 
Ni-Al bilayer composite 

A plot of crack length as it propagates dynamically under cyclic and tensile loading for both the 
Ni and Ni-Al is shown in figure 9. During tensile loading, plastic deformation around crack tip 
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dominates crack propagation, resulting in slower crack growth when compared to the crack 
growth under strain controlled (Cmax of 0.046) cyclic loading. The earlier nucleation of 
dislocations from the crack tip during tensile deformation (at 29 ps), when compared to their 
nucleation (at 189 ps) during cyclic loading slows down tensile Mode-I crack growth in Ni. In 
Ni-Al, dislocations nucleate from the crack tip at around 26 ps, which retards crack growth and 
prevent it from reaching the interface. Further discussions and details are presented in reference 
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Fig. 9. Dynamic crack growth comparison under uniform tensile and cyclic loading (case 1) for 
Ni and Ni-Al bilayer composite 

CONCLUDING REMARKS 

Nanoscale multilayer metallic composites (NMMCs) are of scientific and industrial interest due 
to their unusual mechanical properties. In considering the structure of NMMCs and its impact on 
strength and deformation, the role of interfaces becomes clearly paramount. Nanoscale 
multilayer metallic composites contain extremely high densities of interfaces, and achieve very 
high strength levels. Interfaces play a crucial role in determining material strength by acting as a 
strong barrier to slip transmission. The influence of such interfaces on Mode-I crack propagation 
in a nanoscale bilayer Ni-Al composite employing molecular dynamics (MD) modeling and 
embedded atom method inter-atomic potential has been investigated and presented. 

Results for Ni single crystal are in agreement with predictions given by Abraham, et al ^' for fee 
solids with crack initially growing brittle and eventually undergoing a dynamic brittle-to-ductile 
transition with a spontaneous proliferation of dislocations from the crack tip followmg a 
roughening of the crack surfaces. Results for Ni-Al also showed an initial brittle crack 
propagation with planar cleavage of atoms between the two neighboring (001) planes defined by 
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the initial seed crack and crack surfaces getting roughened when the crack propagation speed is 
about one-third of the Rayleigh wave speed. As the propagating crack approaches the interface, a 
small bud called the 'process zone' at the crack tip start interacting with interfacial defects that 
eventually blunts the crack tip and ceases further crack growth. 

For the case of cyclic loading, depending on the value of the applied maximum strain, crack 
propagates either by fatigue cleavage of the atoms in the crack plane or by void nucleation in the 

regions near the crack tip. In Ni-Al, as crack approaches the bi-metallic interface, dislocations 
start emanating from the interfacial bi-layer. The presence of interface in the Ni-Al prohibit 
crack from propagating beyond the interface. The creation of voids slows down crack growth in 
both the Ni and Ni-Al at higher value of Cmax during cyclic loading. Plastic deformation 
dominates crack propagation during tensile loading that result in slower crack growth, when 
compared to the crack growth under cyclic loading. The earlier nucleation of dislocations at the 
crack tip in Ni-Al prevents crack from reaching the interface during tensile loading. 

In sunmiary, presence of semi-coherent interface in the nanoscale Ni-Al bilayer composite was 
found to prohibit crack from propagating beyond the interface. An understanding of interface 
effects on fracture on NMMCs is essential in forming a critical foundation for the development 
of newer generations of nanoscale multilayer metallic composite structural materials with better 
combination of properties. 
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B: COMPUTATIONAL ENABLING TECHNOLOGIES 

Section B focuses on the research activities related to the enabling technologies. In particular, 
multi-scale modeling approaches are required to accurately capture the disparate length scale 
effects in various engineering problems. Project work in this area focused on the coupled Lattice 
Botlzmann and Navier Stokes modeling for flow problems in collaboration with University of 
Alabama at Birmingham. Further developments in these concurrent coupled modeling 
developments are needed. The present efforts are geared towards applications in understanding 
the nano fiber, nano tube resin flow interactions in composites material processing. Due the low 
length scale size of nano fibers in comparison to the resin flow domain, low length scale methods 
in the vicinity of the nanofiber flow region and correlation with the macroscopic flow field. 
Research and modeling investigations and modeling investigations comparing the Lattice 
Boltzmann and Navier Stokes approaches are presented in the sub-section B-1. 

High performance computing architectures are evolving over the years with the Graphical 
Processing Units (GPU) are providing superior performances for computationally intensive 
problems. Recent research efforts involved the porting and implementation of the computational 
process flow process modeling developments on a GPU cluster are presented in sub-section B-2. 

Physics based flow modeling provides an effective way to simulate the resin infusion process in 
liquid composite molding processes for polymer composite structures. These are effective to 
provide optimal injection time and locations for given process parameters of resin viscosity and 
preform permeability prior to resin gelation. However, there could be significant variations in 
these two parameters during actual manufacturing due to differences in the resin batches, mixes, 
temperature, ambient conditions for viscosity; in the preform rolls, compaction, etc., for 
permeability. Research to understand the influence of uncertainties in these parameters on the 
resin infusion time was initiated via a probabilistic, non-deterministic modeling methodology 
using deterministic resin flow modeling and statistical analysis are presented in section B-3. 

B-1 Multi-Scale Simulation Investigations of Nanofiber Resin Interactions using 
Lattice Boltzmann Equations and Finite Volume Methods 

In collaboration with University of Alabama at Birmingham (UAB) 
Authors: Y. H. Kim (UAB), R. Mohan (NCAT), R. Koomulli (UAB), B. Soni (UAB) 

The orientation/distribution of carbon nanotube (CNT) and other nanofibers in polymer matrix, 
one of main factors in manufacturing high-performance multifunctional composites, is an 
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important aspect to be considered during the development of new CNT composites with 
enhanced mechanical, electrical and thermal properties. However, the disparate length scales 
involved and mechanical properties of nanotube and rheological properties of polymer matrix 
around CNT and nanofibers hinder researchers from elucidating the problem via computational 
modeling. Understanding this problem requires a multi-scale computational approach. Different 
computational solvers for each of these scales, bridging techniques between the solvers, and a 
representative model of a carbon nanotube/nanofiber are needed for the simulation of this class 
of multi-scale and multi-disciplinary problems. 

Project efforts towards this objective focused on 1) the coupling of a macro-scale solver, 
HYB3D, and a meso-scale solver. Regularized Lattice Boltzmann (LB) equation solver, for 
computational fluid dynamics, 2) the generation and analysis of a representative volume element 
for CNT using elastic theories and ANSYS as computational structural dynamics code, and 3) 
the handling of moving boundaries in lattice cell for fluid structure interaction using simple 
standard bounce-back boundary schemes. A 3D flow past a circular cylinder is simulated using 
Bhatnagar-Gross-Krook dynamics and regularized LB methods as a demonstration of the LB 
method. The comparison of the results between two models (macro finite volume solver HYB3D 
and meso solver LB) demonstrates that the regularized LB method can be used for coupling 
meso-scale and macro-scale solvers. 

Recently, carbon nanotubes (CNT) are used as filler in polymer composites because of its 
dramatic physical properties including mechanical strength [1-3], electrical conductivity and 
capacity [4], and thermal conductivity [5]. These remarkable properties make CNT as one of the 
most promising reinforcing materials in the fabrication of advanced polymer composites [6-9]. 
Although the properties of CNT polymer composites [1-9] and micro scale fiber behaviors in 
graphite composite manufacturing [10-13] has been reported in the literature, the orientation and 
configuration of CNTs in a polymer resin flow during the manufacturing process have rarely 
been studied. This is due to the requirement of a comprehensive analysis of fluid structure 
interaction (FSI) between CNTs and polymer, interaction between CNTs, and electrical/chemical 
interactions that need to be considered in the experimental and computational approaches for the 
analysis of this problem. The limitations of experimental facilities and approaches to study this 
multi-scale problem lead researchers to investigate computational simulations. Researchers have 
developed numerical schemes on the multi-scale simulation methods for suspension flow, 
models for CNTs using elastic theories, and numerical methods for handling of moving 
boundaries in FSI for solving these types of problem. 

Typically, the orders of magnitudes of length and time scales in CNT composite simulations can 
span fi-om 5 to 12. Even with the recent advanced computer systems and algorithms, it is 
impractical to analyze the phenomena of CNT composites with computational simulation using a 
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single scale due to the wide span of these length and time scales. Inevitably, multi-scale methods 
are required to overcome this problem. These multi-scale computational methods can be 
categorized into two groups: sequential method and concurrent method. The sequential method 
involves critical information pass from a lower length scale (for example, molecular scale) to a 
higher length scale (for example, macroscale). This method is a proper approach when an 
effective model in molecular scale can entirely be employed for input parameters in the 
continuum constitutive model. Thus, this method can be applied to analyze polymer composites 
which usually consist of fluid (polymer matrix) and solid (fillers). The concurrent method 
involves direct coupling between different scales. This is an appropriate approach when 
important atomic scale phenomena are focused on localized space, such as at a crack tip, grain 
boundary, or nano-indender [14]. 

The sequential multi-scale method is a proper method for CNT polymer composites. The main 
barrier in this method is the development of an efficient and accurate way of bridging different 
scales. The micro scale methods for bridging nano to micro scales include Brownian dynamics 
(BD), Dissipative particle dynamics (DPD), Lattice Boltzmarm (LB), Time-dependent Ginzburg- 
Landau (TDGL), and Dynamic density functional theory (DDFT). Due to the range of scales in 
time and length of CNT composites during process flow interactions is limited to micro and 
macro scales, molecular effects are neglected in the present study. 

Brownian Dynamics (BD) [15] employs an implicit continuum solvent description instead of 
explicit solvent description in molecular dynamics (MD) by assuming no internal motions of 
molecules. This assumption allows much larger time order than that of MD. Therefore, the BD is 
proper method incorporating slow suspension flow of mixed polymer and solvent including fast 
motions of solvent molecules. Due to the approximation of the fast degrees of freedom by 
fluctuating forces in BD, the energy and momentum is not conserved. This non-conservation 
causes consequently the composite system not to be hydrodynamic in macroscopic scale. Thus, 
this BD method carmot be bridged with the Navier-Stokes equations. 

Discrete Particle Dynamics (DPD) [16] is a particle-based method like MD. DPD handle the 
particle at micro scale different from MD at molecular scale. The potentials between particles are 
approximated in DPD using simple order basis function at microscopic length scale. The 

conserved force and momentum at micro scale enable this method to incorporate hydrodynamic 
equation such as Navier-Stokes equation at macro scale. The energy, however, is not conserved 
in this method due to the presence of dissipative and random forces. 

LB [17] method is originated from discretized, simplified and fictitious molecular dynamic 
lattice gas automation. This method is usually employed to investigate phase separation of binary 
fluid in the existence of filler particles in polymer composites. An important advantage of LB 
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method is that the interactions between particles at micro scale can easily be incorporated into 
numerical model such as Navier-Stokes equations at macro scale. In the LB method, particle 
occupation variables are replaced by single-particle distribution functions. In addition, individual 
particle motion and interaction between particles in the kinetic equations are neglected. This 
assumption causes this method to be numerically unstable and consequently may lead to 
unreasonable physical results in the case of high force interaction between particles. 
TDGL generalized Cahn-Hilliard-Cook nonlinear diffusion equation for a binary blend into 
phase-field and reaction-diffusion between blended polymer and fillers [18]. By minimizing free- 
energy function in this method, time-dependent structural evolution of the blended polymer is 
investigated. A simplified version called cell dynamic method, of the TDGL method has been 
developed by Oono et al. [19] by replacing Laplacian term with isotropic discrefized counterpart. 
Both methods have been recently and widely used to analyze the phase-separation of 
nanocomposites [20-22]. 

DDFT method integrates Gaussian mean-field statics into TDGL method to model the behavior 
of polymer fluid implemented in Mesodyn^*^ from Accelrys [23]. The integration enables this 
method to employ numerically full polymer path without truncating fi-ee energy at a certain level. 
In addition, this method has a capability of simulating viscoelastic properties of polymer fluid. 
Of all these different methods, LB method has been widely used for simulating particles/fibers in 
suspension flows because of the ease of generation of the mesh, data locality for parallelization, 
flexible boundary conditions, and noise-free solution. Ladd [24, 25] provided theoretical 
foundation and applications of a general technique for simulating solid-fluid suspension via 
discrete Boltzmann equation. Lallemand and Luo [26] developed an LB method for moving 
boundaries for analyzing moving cylinder in a transient Couette flow. Lee-Edwards boundary 
conditions for sheared suspension flow in LB method were used by Lorenz and Hoekstra [27] to 
capture shear-thickening behaviors. Also, particle-particle interactions in shear flow were 
analyzed using a chain like cluster of suspended particles by Hyvaluoma et al. [28]. Joshi and 
Sun [29] developed multiphase LB method for particle suspensions. Ramachandran et al. [30] 
developed an LB model for suspensions of self-propelling colloidal particles via active particle 
with velocity field. While aforementioned models/schemes are applied to rigid bodies, Wu et 
al.[31, 32], MacMeccan et al. [33], Buxton et al. [34], Lorenz et al. [35] and Dupin et al. [36] 
simulated deformable particles using schemes for LB method to handle moving boundaries 
(fluid-solid interface) and/or models for representing particles/fibers. 

The schemes for handling FSI interface due to the deformable or moving rigid particles/fibers 
have been investigated and reported in the literatiare. The bounce-back scheme for no-slip 
velocity boundary conditions at walls has been most widely used due to ease in implementation, 
although the scheme has only a first order accuracy at the boundaries [37, 38]. This simple 
boundary scheme is used to analyze fluid flows in complicated geometries such as flow through 
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porous media, flow around high curvature boundary, etc. This mismatch in the order of accuracy 
in the LB method degrades the accuracy of entire results [33, 34, 36]. For more accurate results 
in the complex geometries, the method has been improved using interpolation schemes including 
spatial linear [39], quadratic [40], and multi-reflection [41] methods. Wu et al. developed an 
immersed boundary LB scheme [31] and external boundary force [32] on the interface between 
fluid and structure without the interpolation schemes. 

To model the micro or nano structures in polymers, researchers have used several representative 
models ranging from simplified models such as spring models [34, 36] to equivalent-continuum 
approach (ECA) or self-similar approach (SSA) [42-44] combining with MD to consider local 
interaction loading forces between molecules by their potential energies including covalent bond 
stretching, bond-angle bending, and Van der Waals interactions. The foundation of ECA is to 
develop a representative volume element (RVE) at macroscopic length scale to statistically 
represent the local interaction between microscopic elements. The RVE has been developed 
ensuring that the element length scale is consistent with the smallest constituent that covers the 
RVE continuum behavior properly. The developed RVE is then used iteratively or periodically 
at macro scale. The RVE models have usually the following basic assumptions: (a) linear elastic 
properties, (b) the identical fillers in shape and contents, (c) no slip, crack and de-bonding 
between polymer matrix and fillers. Based on these assumptions, the RVE is described as multi- 
material elements using volume fraction. The Halpin-Tsai [45] and Mori-Tanaka [46] models are 
widely used in polymer composites for this method in micro scale. These RVE models have 
expanded to nano scale modifying the basic assumptions. Li et al. [47] studied CNT epoxy 
composite strength using Halpin-Tsai and Mori-Tanaka models. Gao and Li [48] developed a 
shear-lag model to predict the interfacial stress of CNT composite using RVE. Liu and Chen 
[49,50] employed FEM and boundary element method (BEM) to study CNT composite using 
RVEs containing CNTs modeled as thin elastic layer for short CNT or an open cylinder for long 
CNT. Liu et al. [51] recently developed BEM models combined with a new cohesive interface 
model with MD and analyzed Young's modulus of CNT composite. Tserpes et al [52] employed 
a multi-scale RVE to investigate the effect of interfacial shear strength on the tensile behavior of 
CNT composites. Pantano et al. [53] studied the effect of CNT curvature and interface 
interaction with polymer matrix on composites using RVE and FEM. 

From the literature search, it was concluded that the Lattice Boltzmaim (LB) method is suitable 
for the modeling of micro-scale behavior and continuum modeling is suitable for simulation 
mean suspension flow. Based on the conclusion, the OpenLB for LB method and HYB3D for 
continuum modeling were chosen. The sequential multi-scale coupling method of two solvers 
was chosen and the part of coupling procedures involving mesh generation, code modification 
and development for space and time synchronization has been implemented. The governing 
equation of HYB3D was studied to find out the passing parameters for the coupling procedures 
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with OpenLB and the brief introduction of the code was introduced. The validation of PoisseuUe 
flow through square duct was shown in the last annual report with an LB solver and an in-house 
Navier-Stoke (NS) solver to couple the meso-scale LB and macro-scale NS solvers. The results 
showed good agreement with the analytical solution. In the coupling procedures of two solvers, 
the distribution fiinction updated by moving boundaries in OpenLB is related to passing 
parameters. In the present project work, the validation of flow past moving cylinder in a channel 
flow at rest was performed using a moving boundary algorithm. The results from fixed frame 
showed lots of fluctuation, which may be caused by taking averaged values of the nearest nodes 
in the extrapolation of distribution function from solid to fluid region due to the moving 
boundaries. To remove the fluctuation, the other methods for the extrapolation schemes could be 
used. 

Lattice Boltzmann Method 

The LB equation has been originated from lattice gas (LG) automata employing a 
discrete kinetics with a discrete lattice and time or expansion of the continuum Boltzmann 
equation with a discrete set of velocities for small Mach number [1]. Frishch et al [2] found LB 
equation to be turned into NS equation using Lattice Bhatnagar-Gross-Krook (BGK), Chapman- 
Enskog expansion, which is a formal multiscaling expansion method. 

In this sector, the details of derivation of LB equation from lattice gas automata. Lattice 
BGK from LB, and NS equation from LB equation within small Knudsen and Mach number will 
be described. 

Lattice Boltzmann Equation from Lattice Gas Automata 

Let's define a set of Boolean variables 5i(x,t) (i = 1, ..., N), describing the particle 
population function on nodes of lattices, where N is the number ( 6 in hexagonal lattice in Figure 
1) of direction of the discrete velocities at each node. The evolution equation of LG automata 
can be written as: 

5,(x + e„t + l) = 5,Cx,t) + fii(5i(x,t)), (i = l,-M.      (1) 

where e^ are the local particle velocities, Qj is a collision operator. The movement of particles in 
the evolution can be separated into streaming (propagation) and collision phases. The major 
disadvantage of using LG automata method for macroscopic flow applications is the occurrence 
of the statistical noises at each node, which has almost no effect on dynamics of the flow and 
could be prone to lead divergence of solution in hydrodynamic problems. For solving these 
problems, LB method have been developed using the averaged velocity distribution function, 
which represents each group of particle movements by neglecting the individual particle 
movements and interaction between themselves.   The LB equation can be written with lattice 
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units (lattice space (&x) and time (At) increments are set to be unitary) by replacing Eq. (1) with 

fi = (3i}, where (> denotes an ensemble average operator, and /^ =/j(x,t) is the averaged 
velocity distribution function: 

/,(x + ei,t + 1) - /,(x,t) + n,C/,(x,t)), (i - l,-,Nl   (2) 

Figure 1. A particle population function on a node of hexagonal lattices 

Lattice Bhatnagar-Gross-Krook (BGK) from Lattice Boltzmann Equation 

If fluid has long wave length and low frequency properties (small Knudsen number) 
which can be covered by averaged velocity distribution function, the Ax and At in Eq. (2) can be 
considered as small parameter s. The left hand side of Eq. (2), then, can be expanded using 
Taylor expansion series in time and space to second order in e: 

5£t 
at 
g + V-e,/i+i.(w:e,e,/: + 27-e,f + ^)=^ (3) 

Similarly, the averaged distribution fimction /^ can be defined as: 

fi^fr+^fr" (4) 

where, f^'^ is denoted as an equilibrium distribution function, and J^"^"^ is defined as a 

nonequilibrium distribution function which can be expanded by low Mach number expansion [1] 
as: 

4^''^ = 4»+E//^U0(s2) (5) 

where, the superscripts of /; are the order of the Mach number expansion. 
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To linearize the collision operator O,, after inserting   /j in Eq. (4) into H,, it can be 
expanded with Taylor series as: 

When £ goes to the zero asymptotically, Eq. 6 can be written as: 

"^^{fi-f-^ (7) 

where   Mj^-= ——— is called as the collision matrix [3], which represents the scattering rate 

between two arbitrary directions i and j. In the collision, mass and momentum should be 
conserved so that My should satisfy following equations 

E^iM,^=o (8) 

S^iM,^e, = 0 (9) 

Assuming My is relaxed to an equilibrium state at a single rate x, iW^is expressed as: 

1 
M,, = --/ (10) 

where, I is identity matrix. The new defined U^ also should satisfy Eq.'s (8) and (9), then 

consequently local equilibrium of macroscopic parameters involving density p and momentum 
; = pu, should be conserved as: 

P = iIUfi (11) 
/=S;^i/^e, (12) 

In addition, similariy, the Qj = n,(/j(x,t)) needs to satisfy conservation of total mass and 

momentum at the local lattice as follows: 

i:flifi= = o (13) 
Sf^in,e, = 0 .,        (14) 

Inserting Eq. (10) into Eq. (7), the lattice Bhatnagar-Gross-Krook (BGK) collision term [4] are 
derived as: 
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M£5^^_i;--^^ (15) 

and the lattice BGK equation with Eq. (15) is defined as; 

/,Cx + e,.t+l)-/,(x,t)-^^^ (16) 

Navier-Stokes Equation from Lattice Boltzmann Equation 

The formal multiscaling expansion, Chapman-Enskog is required to derive a macroscopic NS 
equation from LB equation, assuming that the time scale t^ is much smaller than time scale tj [5]. 
The expansion of time and space derivative is written as: 

Using low Mach number expansion used in Eq. (5), the collision operator H,- can similarly be 
expanded as: 

Qi = sOj^^ + s^af + 0(ff3) (19) 

Applying the above expansions to Eq. (6), then the scale separated version of the equation with 
neglecting 0{£^} is obtained as: 

Eflr+.^iir = i.   ,. "^\. "'=    ,_ nfr+^rr)      (20) ' i I 1   2 9     .     7  5 1 

Considering collision operator works only on f^^^ in Eq. (13), Eq. (11) can be written as: 

P = i.%^n=i^^f:'' (21) 

Eq.'s (11) and (13) play an important role in leading LB to NS equation. Expanding Eq. (13) on 
two different orders E and e^ in Eq. (20), the following equations are given as: 

Sflin^^^~E^,r' + ^i-S^ie.r-^P+Vi-i™ = o        (22) 
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and 

1 a^    .a 
= ^P + Vi-iW+i^p + ^V,-j(°)+iv,V,:n(°) + ic|¥^p^O     (23) 

where, c^ is defined as a sound speed, and 

n = S;1i(eiej-c20/i (24) 

To eliminate second order derivative of time, insert Eq. (22) into Eq. (23), and then the following 
equation is obtained as: 

Ap + v^.^(l)+i_Lv,.;(0)+iVi?i:nW+ic^v2p^0 (25) 

In order to remove the second order time derivative of density, introduce a source term F = sF 
and put it into Eq. (14). 

S';iin,e, =F (26) 

Due to the source term, a correction term should be added to momentum as: 

/=Sfli^e,= Sflir'ei-f (27) 

Extracting terms for 0{s) from Eq. (26), then 

S^ie,0«=^Efl,e,r+V,-S^,e.e,r = ^i(«+V,.n(«+c|V,p^iv«(28) 

Now, terms for 0{s^) in. Eq. (25) can be evaluated using Eq.'s (27) and (28) as: 

Ay^. jm ^ 7^. p^) _y^^^^ n(tQ _ ^2v|p (29) 

Vi-J« = -^Vi-F (30) 

Inserting above two equations into Eq. (25), finally the equation is obtained as: 
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This equation forms the mass conservation equation of NS equation eliminating ts time scale 
firomEq. (21) as: 

±p + Vj = G (32) 

Extracting terms for 0{E^) from Eq. (26), then 

where the tensor R^ is nonlinear deviation term [6]. 

Using Eq. (28), the second order time derivative of zeroth-order of momentum can be written as: 

^,(0)._?.(^(x)_,^.n(0)-c|V,p) (34) 

Inserting the equation into Eq. (33) and using Eq. (30), and then Eq. (33) can be simplified as: 

^jW+Vi- nW+i^7,-nW + ic|^V,p+^?iV,:4« = 0 (35) 

To make momentum conservation equations, solve Eq. (26) combining Eq.'s (28) and (35): 

1/0) +y.^n + dp/+^(l-(nco) + c^pi) + ?i ■ fl(°))^ = F (36) 

The terms of Eq. (36) can be matched with macroscopic momentum equations such as: nt"^ is 

identified with puu , cipl with p! by ideal gas law, and the remaining 0(s^') terms with -x . For 
example, let's take two-dimensional lattice with nine velocity vectors which has origin ei(0,0) in 
Figure 2, which is easy to understand mathematical manipulating instead of three-dimensional 
model. Chen et al. [7] formulated the general form of equilibrium distribution function, which 
has the error 0{u^), as: 

f*'^=pta + &ei-u + c(eru)2 + du2] (36) 
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where, a, b, c, and, d are unknown constants with the assumption of   small Mach numbers. 
Satisfying Eq.'s (11) and (12), the unknown constants can be analytically found as [8]: 

f^'^^poii^l + 3ei ■ u + ^(e, -uj^-|u2] (37) 

where, <yi=4/9, £i>j=l/9 (i = 2,4,6,and 8),and «i=l/36(i = 3,5,7,and 9) which are determined to 

accomplish isotropy of the fourth-order tensor of velocities and Galilean invariance [9]. 

Figure 2. A two-dimensional lattice with nine velocity vectors 

Inserting the above equation into Eq. (36) and solve it, and finally the NS momentum equation 
are obtained as: 

3u 
it + ? ■ uu = - [-?p + vV ■ (¥pu + Vpu)] (38) 

where, p = p/3 is defined as the pressure, which provides a sound speed, Cg =^ l/v3by ideal gas 
law, and v = (2T —1)/6 is denoted as the kinematic viscosity. 

Regularized Lattice Boltzmann 

Before going to the details of the regularizafion procedure [10] of LB, let's recall original 
LB equation, Eq. (2) 

fiix + ei,t + 1) = /^(x,t) -t-n^(/f(x,t)), (i = 1,-,N'} 

The dynamics of particles in the LB equation can be split into two steps: 1) collision step, 2) 
stream step (propagation step). The former calculates the new outgoing particle parameters from 
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incoming ones by the relation j;°^* = ^"^ + 0;(/j(x,t)), and the latter propagate incoming 

particles along the lattice velocity ej by the relation f^^ (x + ej,t + 1) = j^°"*. Let's define IT as 
momentum flux tensor as: 

f!.^   ^if^X^ia^ipfi (39) 

where, e^a, is the component of the velocity vector e^ in a-coordinate direction. Using the BGK 

equation, Eq. (16) for modeling dynamics of particles in LB equation, the distribute functions /j 
can simply be defined as: 

n = C+f"^ (40) 

and then the momentum flux of nonequilibrium part of the distribution fimctions is calculated as: 

KT=^-i^-^'^=i^ia^i^fr (41) 

By cancelling higher order contributions from CE expansion to BGK dynamics to comply with 
their 0(e) hydrodynamic values, the nonequilibrium part of the distribution function can be 
expressed as: 

m ^ //'^ = - TT (J^ia^m - ciO V.pu. (42) 

, and then the momentum flux of nonequilibrium part is calculated as: 

n^7^«S':iie,e,e,^4^'^--Tc|(¥„pu, + Vppu^) (43) 

Combining Eq's (42) and (43), the regularized nonequilibrium part of the distribution 
function can be simplified as: 

ri'^=3^(^i^^^0-'5On:p (44) 

This equation provides regularized distribution functions, /^'^*'* = /^^'^(p,u) +/^^   that possess the 

required symmetries for lattice BGK model. 

Moving Boundary in Lattice Boltzmann Method 

To handle moving boundaries in LB method, which is required to analyze the interaction 
between a representative model for nanotube and polymer, the method developed by Lallemand 
and Luo [11] has been employed in OpenLB code. The brief description of the method is 
described and the implementation procedure in OpenLB is explained. 
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Moving Boundary Algorithm 

The moving boundary algorithm proposed by Lallemand and Luo [11] is based on the quadratic 
interpolation and bounce-back scheme on curved boundaries. The bounce-back scheme is 
implemented with the assumption that the interface boundary between two different materials 
(ex.: solid and fluid) is located on the half-way in a cell. The challenge is how to solve moving 
interface not located on the half-way in Figure 3. A particle, x is located on r, in the Figure, is 
considered in one direction along one velocity vector in Figure 2. Let's define q, the distance 
between the interface boundary and a closest fluid node, which is normalized to 1. In addition, 
consider a moving wall located at an arbitrary position Vw between two nodes, rj and r^, where rj 
is located on the fluid region and r^ on the moving solid. 

a)   ^ < 0.5 

-Ot- 

moving wall 

^-4 

b)   ^>0.5 

^. 

„        moving wall 
l<        X    ■*, 

Figure 3. Two cases for moving interface bolindary in the lattice used in LB method 

For the case of ^ < 0.5, the distribution function, j^ (r,, t), where the under bar of i, one velocity 
vector, denotes inverse direction to the vector, can be interpolated before propagation and 
collided. The distribution function can be written as [11]: 

fiirp t) = g(l + 2q)l(rp t) + (1 - Aq^jKrf.t) - g(l - 2q)fXrf,t) + 3w, (e, • u^)     (45) 

where ^ is the distribution from the previous time (before propagation), and u^ is the wall 
velocity. 

For the case of g > 0.5, the distribution function, ^z (r,, t), can be interpolated after propagation 
and collided. The distribution function can be written as [11]: 

/.C-)'') = Slii7)K'5'') -^/ih'.') -iSiiMo".') +sS('' ■"-'   "o^ 
(2q-l) 

q4 

The last term, !Wj(ej-u^) in Eq's (45) and (46), describes the momentum due to interaction 
between fluid and solid introduced from the mass and momentum conservation. 
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Since propagation in time is the same as movement from a location to next to the location in 
space, the Eq's (45) and (46) can be also written as: 
For the case of ^ < 0.5, 

fi{rj,t) - gCl + 2q)fi{r^ + e^Ku) + (1 - ^^')fi{rj,t) - g(l - 2q}fi{rj - Bi&l,t) + Soj^Cej- u^) 

(47) 

For the case of ^ > 0.5, 

(48) 

Implementation of Moving Boundary Algorithm in OpenLB 

To implement the moving boundary algorithm in OpenLB, the hierarchical data structure of 
OpenLB has been analyzed to touch the distribution flinction and get momentum introduced 
from fluid structure interaction. For the distance q, bisection method has been employed. 

General setup for stationary fluid dynamics in OpenLB 

To simulate stationary fluid dynamics in OpenLB, the following setup is required. 
a. Define flow parameters involving Reynolds number and lattice velocity. 
b. Define boundary and initial condition 
c. Define termination criteria. 
d. Define flow field with object region in the lattice using 0 and 1 representing flow and 

object, respectively 
e. Choose      the      model      for      flow      dynamics      involving      "BGKdynamics", 

"MomentumExchangeBounceBack", "ExtemalMomentBGKdynamics", and etc. 
f   Initialize distribution fiinction and collide and stream until the given termination criteria 

The modification of the general procedure is required to implement the moving boundary 
algorithm. 

Modification of general setup for moving boundary algorithm in OpenLB 

To simulate moving boundary algorithm in OpenLB, the following setup is required. 
a. Define flow parameters involving Reynolds number and lattice velocity. 
b. Define boundary and initial condition 
c. Define termination criteria. 
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e. 

f. 

Define   initially and update flow field with object region in the lattice using 0 and 1 
representing flow and moving object, respectively 

Choose initially and update the "MomentumExchangeBounceBack" model for moving 
object and "BGKdynamics" for flow region. 
Initialize distribution function and collide and stream initially once, 

g.   Find the distance q using bisection method and update distribution function using Eq's 
(47) and (48) 

The modification of the general procedure is required to implement the moving boundary 
algorithm. In the several model of dynamics of distribution function in OpenLB, a 
"MomentumExchangeBounceBack" class is chosen for defining solid regions to get momentum 
on the interface boundaries between fluid and moving solid objects. 

Distribution function update in OpenLB 

The final step in the previous section has been implemented modifying codes in OpenLB. The 
bisection method [12] was used to obtain the distance q. Flow direction information was 
extracted in the "dynamic" class in OpenLB to find neighboring distribution function and get the 
value in the function along the flow direction. This procedure was performed using follow steps. 

a. Find interface cell between fluid and moving solid object using the dynamic model 
information. 

b. Get the flow directions in the "dynamic" class in the found interface cells 
c. Get the distances using the bisection method. 
d. Get the index of neighboring distribution function and needed values of the ftmction 
e. Update distribution function on moving boundary using Eq's (47) and (48) with the 

obtained values in previous steps. 
f. 

Two dimensional flow past a moving cylinder 

Two dimensional flow past a moving cylinder eccentrically located in a channel has been 
simulated to validate the moving boundary algorithm using the two frames of reference. One is 
the moving frame with a fixed cylinder. The other is the fixed frame with a moving cylinder. 
The boundary and initial conditions listed in Table Iwere setup to make the relative motion 
between the cylinder and the flow in the channel the same in either frame. 

Table 1. Different setup conditions for the flow past a moving cylinder 

Moving Frame Fixed Frame 

Inlet Constant Pressure Constant Pressure 

outlet Outflow Outflow 

124 



Side Wall Moving and no-slip No-slip and no-movement 

Cylinder Fixed Moving 

The Reynolds number for this simulation is taken as 200. The height and length 
dimension of the channel is 1 and 10 respectively. The initial velocity is 0.0 in the moving frame. 
The side walls are moving with -0.04 velocity. In the fixed fi-ame, the cylinder is moving with 
0.04 velocity. All movement is only along x-direction. The cylinder has 0.12 radius. It is located 
on (6.6, 0.54) in the moving frame and (0.6, 0.54) in the fixed irame, as shown in Figure 4. The 
contour plots of velocity in x-direction in both trames are shown in Figure 5. The velocity in x- 
direction in moving fi-ame is shifted by 0.04 to compare the results with those in fixed frame. 
The results from fixed frame showed lots of fluctuation, which may be caused by taking 
averaged values of the nearest nodes in the extrapolation of distribution fiinction from solid to 
fluid region due to the moving boundaries. 

Moving wall 

o 
Moving wat 

10 

a)   A cylinder in moving frame 

O 

b)  A moving cylinder in fixed frame 

Figure 4. A cylinder in a channel with different frames 

a)   A cylinder in moving frame 
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b)  A moving cylinder in fixed frame 

Figure 5. Contour plot of flow velocity in x direction 
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B-1 APPENDIX-I 
Preliminary Results 

The main sections discussed the theoretical and mathematical formulations related to the Lattice 
Boltzmann simulations and their relation to the macroscopic flow variables. Preliminary 
computational investigations that were performed in the project efforts to understand the usage 
and behavior of Lattice Boltzmann method for flow problems are presented next. Classic flow 
configurations in 2D and 3D geometrical configurations are the preliminary test simulations 
investigated. 

Lattice Boltzmann Simulation 

OpenLB Test Cases 

A Lattice Boltzmann simulation solver, OpenLB, has been downloaded to simulate two cases for 
multi-scale simulation to verify whether the open source code works in the UAB Linux-cluster 
system. The fu-st case is a flow around a 2D cylinder inside a channel, which produces a von 

Karman vortex street. The Reynolds number for this simulation is taken as 400 and the 
geometry used for this simulation is illustrated in Figure 1. The captured pictures of the flow 
development from the simulation are shown in Figure 2. The simulation took about 23 minutes 
of CPU time. 

i 

1 

1 

(   ) 1      0.25 

i 
-^                                                                                                                                                       ». 

6 n 
Figure 1: Geometry used for flow past a cylinder using Lattice Boltzmann equation 
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■MtlHli itm 

Figure 2: Von Kamian Vortex Street past a Cylinder by Lattice Boltzmann Equation 

The second test case is a driven cavity flow. The geometry for this problem is a square cavity 
with upper surface moving at a constant speed. The Reynolds number for this problem is set to 
100. The captured pictures of the animation of the energy contour from the simulation are shown 
in Figure 3. 

The third test case is a flow past a 3D cylinder has been simulated by LB using BGK dynamics 
and regularized LB methods. The dimension of geometry is illustrated in Figure 6. The mesh was 
constructed using a template "CylinderShaeDomain3D()" in OpenLB, which is modified based 
on a built-in template "CylinderShaeDomain2D()". The resolution was set to 101 nodes along 
each direction. The Reynolds number for this simulation is taken as 400. The velocities at the 
top, bottom, and side walls were set to zero, the velocity at the outlet was extrapolated fi-om the 
inside, and the velocity at the inlet was set based on the Poiseuille profile. 
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Figure 3: Energy contour of driven cavity flow by Lattice Boltzmaim equation 

Figure 4: Dimension of cylindbr and far-field domain for 3D cylinder simulation 

The velocity distribution, velocity vectors, and streamlines predicted by the LB method using 
BGK dynamics and regularized LB method are shown in Figures 5-7. The velocity vectors and 
the traces are colored based on the velocity magnitude (blue color represents lowest velocity and 
red color represents highest velocity). In Figure 5, the maximum velocity from Regularized LBE 
shows good agreement with LBE using BGK with 0.28% error and the distributions at two cross 
sections are almost the same. Each simulation took about 29 days using 16 processors. The good 
agreement between both methods as shown in Figures 5-6 indicate that the Regularized LB 
method can be substituted for LB method using BGK dynamics for easily coupling between LB 
and NS solvers. 
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a)   Velocity from LBE using BGK b) Velocity from Regularized LBE 

Figure 5: Velocity distributions from LBE using BGK and Regularized LBE 

a)   Particle traces from LBE using BGK b)   Particle traces from Regularized LBE 

Figure 6: Particle traces from LBE using BGK and Regularized LBE 

a)   Velocity vectors from LBE using 
BQK b)  Velocity vectors from Regularized LBE 

Figure 7: Velocity vectors from LBE using BGK and Regularized LBE 

Navier-Stokes Simulation 

We have simulated a laminar flow over a cylinder using the continuum approach via a 
UAB in-house finite volume code, HYB3D. The Reynolds number for this simulation is taken 
as 335.51.   A cross-sectional view of the mesh and pressure distribution on the surface of the 
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cylinder are shown in Figure 8. The pressure distribution, velocity vectors, and streamlines 
predicted by the Navier-Stokes simulation are given in Figures 9-11. The velocity vectors and 
the streamlines are colored based on the velocity magnitude (blue color represents lowest 
velocity and red color represents highest velocity). In all these plots the cylinder is colored 
based on the pressure distribution. 

Figure 8: Cross-sectional view of the mesh for HYB3D 

Figure 9: Pressure distribution by HYB3D 
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(a) Overall view 
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(b) Upper end of the cylinder 

(c) Middle section 

Figure 10: Velocity vectors by HYB3D 
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(a) Overall view 

(b) Near the end 

Figure 11: Streamlines by HYB3D 
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B-1 APPENDIX-II 

(Project Results) 

PoisseuIIe flow simulation for validation of OpenLB and HYB3D codes 

Before the validation of coupling scheme between two solvers, the validation of each solver 
should be carried out. Therefore, the validation of each solver has been conducted by PoisseuIIe 
flow through a square duct. The results show good agreement with analytical solution. This 
procedure provides the important information involving unit coincidence of parameters requiring 
for time and space synchronization, boundary conditions, initial conditions, and required input 
parameters for each solver. 

PoisseuIIe flow through square duct 

PoisseuIIe flow through square duct has been analyzed for the validation of two solvers, OpenLB 
and HYB3D. The Reynolds number for this simulation is taken as 100. The air dynamic 
viscosity is 1.5e-0.5 kg/m*s. The height and length of square duct is 0.01m, and 0.05m, 
respectively. The initial velocity is 0.15 m/s at the inlet. The analytical equation for this flow can 
be written as 

''=]^(-£)s.,,....(-i)<'-«Mi coEh(t-ity/2a) 

cosh(™/2) 
cos(JiTy/2a) 

(1) 

where, —a <y < a, and a is defined as one half of height. 

Computational setup for PoisseuIIe flow 

Computational setups for the flow through square duct have been established for two solvers. 
Geometrical information for the square duct and physical condition for the flow was fitted into 
computational parameters as listed in Table 1. The required boundary and initial condition and 
the others to get results for each solver are listed in Table 2. The different mesh densities were 
employed to check the sensitivity of the mesh density to the computational results. 

Table 1. Fitted conditions and geometry information for PoisseuIIe flow simulation 

Physical value LBE HYB3D 

Re 100 100 100 

Initial Velocity 0.15 m/s 1 1 

dynamic viscosity 1.5e-05kg/m*s N/A N/A 
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Height of square duct 0.01 m 1 1 

Length of square duct 0.05 m 5 5 

Time N/A Depends        on 
mesh 

Depends on mesh 

Table 2. The boundary conditions and mesh quality for Poisseulle flow simulation 

LBE HYB3D 

Inlet Inflow (velocity) Inflow (velocity) 

outlet outflow Outflow (pressure) 

Side Wall No-slip No-slip 

Mesh quality 20, 60, 80 (Height) 30, 50, 60 (Height) 

Biasing for viscous layer No Yes 

Parallel Processing No Yes 

Mesh generation 

The flow domain through squared duct is automatically discretized to uniform hexahedral 
elements by OpenLB and elements in different sizes were generated manually for HYB3D using 
HyperMesh3D. Three different meshes for each solver have been generated and the total 
numbers of elements and nodes used in the meshes are described in Figure 1. 

^^!^>^^E^»^-"'-" 

40,000 elements, 44,541 nodes 90,000 elements, 97,601 nodes 
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1,080,000 elements, 1,120,021 nodes 500,000 elements, 522, 801 nodes 

2,560,000 elements, 2,630,961 nodes 

a)  OpenLB 

1,440,000 elements, 1,492, 121nodes 

b) HYB3D 

Figure 1. Three different meshes used in OpenLB and HYB3D for PoisseuUe flow simulation 

Velocity profile of PoisseuUe flow through square duct 

Velocity distribution and contour lines at the cross section in the middle of duct along length 
direction (x coordinate) are shown in Figure 2. For these results, the convergence history for both 
solvers is shown in Figure 3. OpenLB requires maximum 3,000 iterations for getting convergent 
solution, while HYB3D requires maximum 1,500 iterations. Comparing three results from 

OpenLB, the result obtained from the simulation with 40,000 elements show different velocity 
profile from the others. However, the results irom HYB3D show good agreement each other. 
This indicates that the mesh with 1,080,000 elements for OpenLB and the mesh with 500,000 
elements for HYB3D are good enough to get accurate results. The velocity contours and contour 
lines at the different cross sections along height direction (y coordinate) are shown in Figure 4. 
The results show that the sensitivity of the mesh density to velocity profile has similar trends as 
the velocity profile does along length direction. Figure 5 shows the velocity on the center line 
along length direction for both solvers. The plot in Figure 5 shows clearly the sensitivity of mesh 
density to the results. 

To validate the results from two solvers with analytical solution using Eq. (49), the root mean 
square (RMS) errors on the cross section at x = 4.9 along height direction are calculated and 
shown in Figure 6. The surface plot and contour lines of the errors are shown in the Figure. The 
RMS errors are not small enough to show good agreement with analytical solution. The 
nonlinear velocity in Figure 3 indicates the 5 length is not enough to remove the entrance effect, 
so that the simulation has been implemented for the other lengths such as 10 and 20 lengths. 
The results with 10 length show the length is still not enough to get rid of the entrance effect as 
shown in Figure 7. The results with 20 lengths provide acceptable RMS errors as shown in 
Figure 8. 
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2,560,000 elements 
a)   OpenLB 

1,440,000 elements 
b)   HYB3D 

Figure 2.   Velocity contours and contour lines at the cross section in the middle of duct along 
length direction of OpenLB and HYB3D codes 
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Figure 3. Convergence history for all meshes used in OpenLB and HYB3D 
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Figure 4.  Velocity contours and contour lines at the cross sections (x = 0.5, 2.5, and 4.5) along 
height direction of OpenLB and HYB3D codes 
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2.2 
Velocity on the center line along x direction 
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Figure 5.   Comparison of velocities from OpenLB and HYB3D codes on the center line along 
length direction 
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Figure 6. RMS errors at the cross section, x = 4.9 along height direction of OpenLB and HYB3D 
codes 
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Coupling OpenLB with HYB3D 

Mesh generation 

The coupling of OpenLB and HYB3D is carried out using the geometry sketched in Figure 9. 
The inside cubic region shown in yellow is solved using OpenLB and the rest of the domain is 
solved using the continuum approach. The spatial discretization of the OpenLB is carried out 
automatically using the built-in ftinctions. The mesh for the continuum domain is generated 
using HyperMeshSD. The surface nodes from the OpenLB are taken as the interface nodes for 
the continuum domain as shown in Figure 10. From the surface mesh, 25 boundary layers with a 
growth rate of 1.2 and an initial thickness 1 .Oe-05 are generated for viscous layer on the walls. 
The cross section view of the generated tetrahedral volume mesh in the middle of square duct is 
shown in Figure 11. The total number of tetrahedral elements for the continuum domain is 
1,327,000. A zoomed-in view of the interface region is shown in Figure 12. 
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Figure 9. The location of interface and interface (yellow) between OpenLB and HYB3D 

Figure 10. Mesh on surface for HYB3D with interface nodes (gray) for OpenLB 

Figure 11. Volume mesh on the cross section in the middle of square duct for HYB3D 
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Figure 12. Zoomed interface for OpenLB in the volume mesh for HYB3D 
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B-2 Physics Based Modeling and Simulation on Graphical Processing Units 
(GPUs) - Porous Media Flow in Liquid Composite Molding 

Authors: R. Haney and R. Mohan, North Carohna A&T State University 

Architecture-Performance Interrelationship Analysis in Single/Multiple 
CPU/GPU Computing Systems: Application to Composite Process Flow 
Modeling 

Abstract 

Current developments in computing have shown the advantage of using one or more Graphic 
Processing Units (GPU) to boost the performance of many computationally intensive 
applications but there are still limits to these GPU-enhanced systems. The major factors that 
contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be 
categorized as hardware and software oriented in nature. Understanding how these factors affect 
performance is essential to develop efficient and robust applications codes that employ one or 
more GPU devices as powerful co-processors for HPC computational modeling. 

The present work analyzes and understands the intrinsic interrelationship of both hardware and 
software categories on computational performance for single and multiple GPU-enhanced 
systems using a computationally intensive application that is representative of a large portion of 
challenges confronting modem HPC. The representative application uses unstructured fmite 
element computations for transient composite resin infusion process flow modeling as the 
computational core, characteristics and results of which reflect many other HPC applications via 
the sparse matrix system used for the solution of linear system of equations. This work describes 
these various software and hardware factors and how they interact to affect performance of 
computationally intensive applications enabling more efficient development and porting of High 
Performance Computing applications that includes current, legacy, and future large scale 
computational   modeling   applications   in   various   engineering   and   scientific   disciplines. 
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CHAPTER 1 

Introduction 

Recent years have seen the slowing of computational intensity offered by standard 
Central Processing Unit (CPU)-based systems, while scientific/engineering applications have 
inexorably grown in the need for computational power [1-3]. As the CPU approached maximum 

power sustainability around 2003, growing from \watt I cm' to IQwatts I cm^ \^, 4], the 
Graphics Processing Unit (GPU) was increasing its computational intensity while maintaining 
efficient power management [5, 6] and lowering cost to meet the high demand placed upon it 
from a thriving game industry [1, 2, 7]. The differences in CPU and GPU computational power 
can be traced back to the designs upon which the two are predicated - i.e., Instruction-Stream 
Based (ISB) and Data-Stream Based (DSB) models. 

1.1 Background and History 

The ISB design of the CPU, whereby a single stream of instructions and data are fed to 
the device, limited any optimization of arithmetic operations since the input stream could contain 
any number of potentially complex instructions. Therefore, the CPU accomplished the 
mitigation of latency by defining elaborate memory caches where processes could be switched 
out when needed, such as with an I/O interrupt, constraining larger numbers of transistors to the 
Memory Management Units (MMU) and logic device arrays [2, 8, 9] for complex operations 
such as speculative branching [10-12]. In comparison, the DSB design of the GPU, with 
instructions and data fed to the device as separate streams, could optimize for arithmetic 
operations as the instruction stream is committed prior to any data input. Therefore, the GPU 
accomplished mitigation of latency by pushing as many processes as possible through the device 
at any given time, conscripting large numbers of transistors for floating-point operations and 
assumed large arrays of uninterrupted data streams via a wide data bus [2, 8]. The DSB and ISB 
paradigms define the framework upon which the present computational architectures and 
software designs for the CPU and GPU have evolved (see Figure 1). 

1.1.1 CPU-GPU hardware parallelism. 

The CPU computing architecture, as per the ISB model, allowed for the maintenance of 
increasingly complex processes [9, 13], the execution of which is physically and logically 
defined by the concept oi pipelines. CPU pipelines are constructs which consist of stages of 
processing elements executed in a series - each output of a stage is the input to the next [9, 13]. 
This single pipeline evolved to the more efficient multiple pipelines [9, 13], eventually leading to 
super-scalar systems [14] and vector processing machines [15] in an effort to maximize 
hardware oriented computational power for the CPU-only computing architecture. 
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Figure 1. The general models followed by the GPU (left) and CPU (right). 

Both the vector processing machines [14, 16, 17] and super-scalar systems [9, 14] increase the 
computational power of CPU-only computing architectures using a low-level hardware defined 
parallelism but take different routes to achieve this goal. The super-scalar system defines 
hardware parallelism via execution of multiple operations per clock cycle augmenting the system 
with large numbers of registers [9, 14], whereas the vector processing machine implements 
common operations across multiple data elements [14, 16, 17]. Vector processing machines, 
such as the CRAY [18] and the NEC SX-8 [19], obtain magnitudes of speedup over scalar 
systems by pushing vector elements onto a special register known as a pipe and then execute 
operations across these elements simultaneously [14, 15]. These CPU architectural designs 
evolved to coerce a parallelism that is intrinsically and naturally present in the GPU device 
architecture. 

Initially computer graphics were defmed as simple vector devices executing as a separate 
process using Direct Memory Access (DMA) to bypass frequent interrupts to the CPU [9, 13], 
but as the GPU matured into a dedicated device it was fi-ee to optimize for throughput, as per the 
DSB model. The larger concentration of transistors in the floating-point operations coupled with 
a wide data bus produced the computational intensity for which the GPU computing architecture 
is widely reputed [20-23] - large numbers of data input is executed simultaneously by 
preconfigured floating-point operations [2, 8, 24]. The execution of floating-point operations 
across the set of data input is physically and logically defined by the construct of a graphics 
pipeline (see Figure 2 and Figure 3). 
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Figure 2. Generic graphics rendering pipeline 
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Figure 3. Rasterizing a simple triangle. 

The graphics pipeline construct is a feed-forward system [24] designed to perform operations on 
four fundamental entities for final rendering by the display device - vertices, primitives, 
fragments, and pixels [2]. Initially these fundamental entities were defined wholly within a 
fixed-pipeline [1, 2] but evolved to become a mix of fixed and programmable sections 
represented by an interleaved series of fixed functions and programmable stages across which 
the data entities flow [1, 2]. Vertex generation is a fixed fiinction and is the first step in the 
graphics pipeline, generating a series of vertices using lists of descriptors from the graphics 
application [2]. The output vertices from the vertex generation function are passed to the 
programmable stage of vertex processing, generating sets of vertex records independently from 
each vertex - projecting the original 3-coordinate system to a 2-coordinate system [2]. The input 
vertices are grouped next into an ordered stream of primitives by the fixed function, primitive 
generation and then passed to the programmable stage of primitive processing - potentially 
merging multiple primitives for rendering [2]. The modified primitives are passed to the 
fragment generation fixed function, producing fragment records that are interpolated from 
samples of the input and passed to the programmable stage, fragment processing [2, 24, 25]. 
The fragment processing programmable stage simulates the interaction of light and surface with 
the input fragment records - textures are defined at this stage as 1-D, 2-D, or 3-D arrays [2, 24, 
25]. The fma\ fixed function, pixel operations are next and calculate output pixels for rendering 
using the input fragment's screen position [1, 2, 7, 24, 25]. 

The software paradigms have also developed conjointly with the architectures for both 
the CPU and GPU devices - the two modes evolving as emphasis on higher performance and 
ease of development have matured. 

1.1.2 CPU-GPU software parallelism. The CPU-only software paradigms have evolved 
along two general modes to increase computational ability- threaded and message passing [15, 
22, 26-28]. The former defines a methodology that concurrently runs independent threads of 
execution within a single address  space  [26]  and the latter uses message constructs to 

147 



communicate and pass data with different processors [26, 28]. These CPU-only software 
paradigms denote paralleHzation as a means of boosting apphcation performance - a common 
practice in HPC appHcations that has historically been efficacious [26, 28-30]. 

The actual implementations of the threaded and message passing systems is defined by 
several standards, libraries and/or specialized languages that include Unified Parallel C (UPC), 
OpenMP, PThreads, Parallel Virtual Macliine (PVM), and Message Passing Interface (MPI) 
among others [26, 28, 29]. Flynn's Taxonomy categorizes the threaded paradigm into the Single 
Instruction Multiple Data (SIMD) and the message passing paradigm into the Single Program 
Multiple Data (SPMD) as the threaded mode requires a lockstep synchronization in a shared 
memory context and the message passing mode can operate in a distributed memory context with 
varying degrees of autonomy [26, 28]. 

The GPU software paradigms, unlike the CPU counterparts that explicitly sought to boost 
performance via parallelism, evolved out of a need to render specialized visuals for graphics 
heavy applications e.g. high demand games [1]. Once the graphics pipeline became flexible, 
allowing programming of the vector and fragment processors, an efficient set of software 
constructs for rendering advanced 3-D visuals was needed and shader languages and libraries 
were developed, so called because the graphics programs generally were written to shade 
fragments of a given rendered object [24, 31], and included the first portable library - Silicon 
Graphics ubiquitous OpenGL [1, 7, 32]. OpenGL was a watershed moment in graphics 
programming as now applications no longer had to be written specifically for a given 
architecture and/or operating system, rendering and manipulating primitives using sets of matrix 
operations that included transformation, translation, rotation, and scaling [33, 34]. 

The OpenGL graphics library was written as an extension of the C language and is built 

using a basic 4-element vector [x, y, z, w} such that if w = l the vector defines a position in space 

and if vv = 0 it is a defined direcfion [24, 34, 35]. These basic 4-element vectors describe a 

homogeneous coordinate system with the w element allowing translation and rotation, building 

into a series of 4x4 matrices that can be modified simultaneously with a single formula [1,2, 24, 
35]. Figure 4 depicts a 16-element operational matrix used by OpenGL such that the 12"', 13"^, 
and 14' elements are the translation components - i.e. M03, Mu, and M23 in the figure. 

^00      ^01      ^02      ^03 

Ko M,, M,^ M,, 

M^ M,, M^ M^ 
A/30 M,, M^ ^33 
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Figure 4. An example 4-by-4 matrix utilized by OpenGL. 

Figure 5 shows a generic 2-D translation of a simple rectangle that occurs after applying 
translation elements to each of the vertices - done simultaneously by the execution of a 
translation matrix similar to the model shown in Figure 4. 

Figure 5. Vertex point P is shifted left and down with translation values. 

The OpenGL library defines the matrices as column-major order rather than row-major 
but this essentially makes no difference as pre-multiplying with row matrices is the same as post- 
multiplying with column matrices [33, 34]. 

The advent of OpenGL provided a boost to graphics programming itself, accessing the 
growing computational power afforded by the GPU for non-rendering purposes was still 
hindered by the tedious and difficult mappings required by the library. The release of Nvidia's 
Compute Unified Device Architecture (CUDA) in 2007 marked the beginnings of General 
Purpose GPU (GPGPU) computmg as it is known today [7, 25, 36]. The CUDA API uses C 
language bindings to access underlying system calls to the GPU processors and embraces the 
familiar concept of threading. CUDA utilizes a GCC-like compiler, NVCC, to compile the GPU- 
bound code to low-level Parallel Thread execution (PTX) virtual machine and Instruction Set 
Architecture [37, 38]. PTX provides a machine independent architecture for CUDA compilers to 
target and allows for portability across multiple GPU generations [37, 38]. 

Computational modeling and simulations in many fields require both hardware and 
software compatibility and influence the resultant computational performance [20, 23, 25, 39- 
41]. The factors that influence the computational performance can be categorized as software 

and hardware oriented, each category can be fiirther demarcated as computational algorithms 
and data-structures/layouts under software; and architectural designs for single and multiple 
CPU/GPU under the hardware category. 
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1.2 Focus and Objective 

The focus and objective of this dissertation is to analyze and understand the intrinsic 
interrelationship between the computing hardware architecture and software variables on the 
performance of the single and multiple CPU/GPU computing systems shown schematically in 
Figure 6. These analysis and discussions are based on computationally intensive, unstructured 
finite element computations for transient composite process flow modeling application. The 
discussions are organized into single CPU/GPU and multiple CPU/GPU systems. The reminder 
of the dissertation is presented and organized into chapters as outlined next. 

Data-Structiires/ y     — f    Computational 
Layouts        />j —■ ^',     .Algorithms 

/   Architectural   \   , 
\       Desigas       ) \ 

Figure 6. Schematic representation of the interrelationship of computational performance. 

Chapter 2 defines the computational problem analyzed and provides key computationally 
intensive kernels, associated algorithms, and software data-structures/layouts, as well as the 
hardware descriptions. Chapter 3 establishes the computational potential of the GPU via the 
analysis and discussion of a key component of many computationally intensive applications - the 
sparse matrix-vector multiplication. The performance metrics and results as well as the software 
data-structures and architectural factors that influence the performance are presented. Chapter 4 
focuses on the full-solution for the candidate application defining key computationally intensive 
kernels and associated developments such as data-structures/layouts for the single CPU/GPU 
computing system. The computational performance as it relates to the architecture and software 
relationship is examined and discussed in this chapter. Chapter 4 will also discuss the hardware 
architectural factors and problem size and how these work to influence computational 
performance. All these factors are considered in the development of an empirical computational 
complexity relationship that will then be correlated to the results and parameters to understand 
how these factors influence the performance. Chapter 5 is essentially the same as chapter 4 
excepting for the use of a multiple CPU/GPU computing systems - defining the relevance of 
these systems for multiple processor designs. Finally, chapter 6 is a summary of the results and 
analysis as well as proposed future directions for CPU/GPU and hybrid computing systems. 
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This last chapter will establish the interrelationship between software-hardware variables on 

computational performance and how these findings can be applied to many computationally 
intensive engineering and scientific applications, not just the candidate application employed in 
this work. 

CHAPTER2 

Computational Problem - Candidate Application 

This chapter describes the computationally intensive physical problem employed as a candidate 
application for analysis and discussion of computational performance factors - Resin Transfer 
Molding (RTM) process and the transient process resin infusion flow modeling [30, 42, 43]. 
This candidate application presented employs unstructured finite element computations, 
assembling sets of locally defined stiffness matrices into a single global stiffness matrix [44], 
that is sparse, symmetric and positive-definitive [44, 45]. The global sUffiiess matrix composed 
of finite element computations, is solved at each time-step during resin infusion flow analysis 
using the iterative Preconditioned Conjugate Gradient method [46] rather than a direct solver 
such as LU-Decoraposition which is computationally prohibitive for most non-trivial problems 
[44, 45]. 

The computational model configurations for computational performance analysis built 
upon finite element meshes employed by the computationally intensive candidate application 
increase in the problem size based on the 3-noded triangular element and node count but are 
consistent in geometry and parameters applied - i.e., both mesh models have the same physical 
descriptions of resin infiision flow modeling excepting size. These meshes, ordered by increasing 
element/node, are shown below - Figure 7 is representative of both mesh configuration 
employed in the resin flow infusion modeling analysis for the candidate application. 

Unstructured Mesh Number of Nodes Number of Elements 

MA 26,936 53,178 

MB 103,196 204,970 

The finite element models defined by meshes MA and MB are consistent in geometry 
and physical problem parameter input therefore for exhaustive purposes another, less regular, 
mesh is analyzed for performance behavior and is denoted as lOFT - shown below is the number 
of nodes/elements for this model mesh configuration. The lOFT unstructured mesh falls roughly 
into the category of medium-sized computational problem with respect to the other two meshes 
studied in this research and is composed of 3-noded triangular elements; however, it is more 
complex in structure. The lOFT unstructured mesh model is shown in Figure 8. 
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Unstructured Mesh 

lOFT 

Number of Nodes 

29,171 

Number of Elements 

58,187 

Figure 9, Figure 10, and Figure 11 show plots of the non-zero element sparsity pattern of 
matrices that result from the input meshes MA, MB, and lOFT respectively. Clearly meshes 
MA and MB are more regular than the matrix from mesh lOFT, which is though diagonally 

dominant and symmetric, has non-zero elements dispersed more evenly across the entire matrix. 
All algorithms referenced in this chapter are presented in Appendix C of this dissertation 

for convenience and better formatting of text. 

3-nodect triangular elements *r     y C ' ^ 

unstructured mesh 

Figure 7. Unstructured mesh geometric configuration used by candidate application. 

3-nodcd triangular doaents 

imstnictiireid mesh 

Figure 8. Unstructured mesh geometric configuration of lOFT model. 
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Nonzeros = 474912 (0.065%) 

Figure 9. Sparse matrix non-zero entry distribution for mesh MA. 

Nonzeros = 1773270 (0.017%) 

Figure 10. Sparse matrix non-zero entry distribution for mesh MB. 
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Nonzeros = 582101 (0.068%) 

Figure 11. Matrix sparsity pattern of mesh lOFT. 

2.1 Physical Description 

The Resin Transfer Molding (RTM) process flow modeling methodology studied is 
based on the work published in [30, 43, 47] and is presented briefly next. 

2.1.1 Resin Mass Conservation. Following the discussions in [30, 43, 47], the resin flow 
through the fiber preform contained within the mold cavity is represented by the transient mass 
conservation equation. The physical mass conservation equation (formed by coupling the mass 
conservation equation with the momentum equation via Darcian velocity field) is given by 

equation (2.1) with i^the permeability tensor, //the resin viscosity, Pthe pressure field, and 

T the state variable representing the infiised state of the resin - further details are available in 
[30, 43, 47]. 

d_ 

dt 
^"VdCl^y VP do. (2.1) 

The value of the state variable ^ is 0, where the resin has not infused the fiber preform, and 1, 
where the resin has completely infused the fiber preform in any given region of the Eulerian 
mold continuity domain Q used in the Finite Element Method (FEM) computafions. 

As discussed in [43] the application of Galerkin weighted residual formulation and 
approximating for the pressure P and fill factor T, with appropriate elements and associated 

shape functions, yields a semi-discrete system of equations given by equation (2.2) with C the 
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lumped mass matrix representing pore volume, K the stiffness matrix, q the load vector, and 4^ 

the time derivative term. 

CP + K P = q (2.2) 

The  transient  semi-discrete  equation  is  then  solved by introducing  the  finite  difference 
approximation given by equation (2.3). 

U/n+l _ Vl/n 

4' =  (2.3) 
At 

2.1.2 LCM Solution Strategy The semi-discrete equation (2.2) can be reduced to the 

equation (2.4) as discussed in [43], with C taken to be the lumped mass matrix. 

C,%"''-C,^;+AtK,.P.=Atq, (2.4) 

The above form of the discretized equation is solved by the LCM process flow simulation 
algorithm at each time-step. Equation (2.4) defmes the implicit form of the process flow 
modeling in LCM detailed in [43]. The generalized algorithm for the finite element 
approximation of the process flow modeling for each time step is summarized in Algorithm 2.1 - 
the interested reader is referred to [30, 43, 47] for fiirther details on the LCM process and its 
conversion to the Finite Element Method formulation for the computational simulation. 

2.2 Key Computationally Intensive Functions 

Examination of Algorithm 2.1 reveals the most computationally expensive fimction of 
the candidate application - the solution to the system of linear equations given in matrix form as 

Ax = b embodied on line 9 as \_Kij _|^ [Pj |^ = {g. }^^.  The solution to systems of linear equations 

can be accomplished via direct methods or iterative methods - each has advantages and 
disadvantages. 

Direct solution methods such as LU-Decomposition provide a solution in a single direct 
solution step for the linear equation system without a need of initial guess solution vector but 
require high computational costs whereas iterative methods start with an initial guess that 
iteratively converges to a solution vector but have significantly lower costs [45]. The candidate 
application presented executes this solver within a nested loop so any incurred costs from a 

single call to the solver will be exacerbated by the product of {KXL) with AT the number of 

iterations for mass-convergence and L the number iterations for all nodes to be determined as 
filled - in addition to the iterations for the convergence of the iterative solution . The 
Preconditioned Conjugate Gradient (PCG) iterative solver was selected as a balance of 
computational cost and accuracy for the solution of linear system of equations. 

2.2.1 The Iterative Solver. The PCG iterative solver chosen for the candidate application 
provides good balance of computational cost and solution accuracy, composed of a set of matrix- 

155 



vector operations [44, 46]. The majority of the computational cost of the PCG iterative solver is 
well documented as the Sparse Matrix-Vector (SpMV) multiplication [17, 46, 48-51] - this 
operation is shown on lines 6 and 9 of Algorithm 2.2. The SpMV operation has high 
computational cost due to three performance issues - poor locality, poor instruction mix, and a 
high memory overhead [45, 52]. Poor locality of SpMV results from indirect and often irregular 
memory accesses, poor instruction mix is derived through the execution of three memory loads 
for every two floating-point operations, and the high memory overhead is due to the largest 
portion of the matrix being zero and thus useless to the computation but held in memory 
regardless. The high memory overhead of this candidate application, and indeed any application 
that builds large sets of sparse matrices, is defined as a memory-bound problem and requires data 
compression data-structures/layouts to execute [30, 44, 48]. 

There are different compression formats that are used to execute memory-bound 
problems and a discussion of these follows. 

2.3 Data-Structures/Layouts 

One of the most common form of data compression for sparse matrix data structures used 
in engineering/scientific application codes for High Performance Computing (HPC) is the 

Compressed Sparse Row (GSR) structure which is partly due to its ease of programming [52- 
54]; however this is not the only model to follow and much research has been done to explore 
this area as the format used can have significant impact on the resulting performance [44, 49, 
52]. The CSR data compression format consists of three arrays - non-zero data elements, 
column indices, and row pointers, and operates by iterating over all the rows of the compressed 
sparse matrix (see Figure 12). Each row is represented as the length between each non-zero 
element held at the row pointer index currently being iterated over, which is then passed as an 

input to the column indices array resulting in the original {row, column) position of the element 

from the original sparse matrix - now held as an array of non-zero elements [52]. 

Algorithm 2.3 is the expression of the sparse matrix-vector multiplication using the CSR 
data compression format [48, 52]. The utilization of the CSR compression format lowers the 
memory overhead for the sparse matrix-vector multiplication but does nothing for the other two 
components that effect performance, e.g. locality and instruction ratio - line 9 of Algorithm 2.3 
embodies an operation that is deleterious to any locality and does not improve the instruction 
ratio. 

The Block Compressed Sparse Row with 2x2 (BCSR2x2) sub-blocks has been shown 
to improve the often disappointing performance of the CSR by increasing locality via reduced 
number of memory loads [21, 52, 55], however this improvement is not guaranteed. BCSR2x2 
operates on sets of sub-blocks of dimension 2x2 rather than single elements, but locality is only 
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improved if the original sparse matrix is composed of dense sets of sub-blocks; otherwise 
memory overhead is increased with no corresponding performance boost (see Figure 13). 
Determination of these dense sub-blocks of the sparse matrix is not known until runtime, making 
this a dynamic problem. 

initial matrix 
17   0    0 
0    2   0    0 
0    0   3    9 
0   0   0   4 

2   3   9 4   non-zeros 

h 
|0| 1| 1| 2|3|3| column indices 

0 2 3 5 6 row pointers 

Figure 12. The CSR format. 
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IT 
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Figure 13. The BCSR2x2 format. 

2.4 Hardware Discussions of Computing Architectures Used 

The GPU, CPU code developments from the present work for the candidate application is 
executed within the context of two separate computing machine architectures generally 
categorized as CPU-based, GPU-based, and/or some combination of the two. Biomedical 
Analysis and Simulation Supercomputer (BASS) located at Chapel Hill, North Carolina is 
categorized as System A for the remainder of this dissertation, and system called as OAKLEY 
located at Ohio Supercomputing Center in Columbus, Ohio is categorized as System B for the 
remainder of this dissertation. The System A CPU/GPU computing system is composed of 
AMD Dual-Core Opteron CPUs and Nvidia Quadro FX 5600 GPUs each with a 2.8 GHz and 1.5 
GHz clock frequency respectively. The System B CPU/GPU computing system is composed of 
Intel Xeon X5650 6-Core CPUs and Nvidia Tesla M2070 GPUs each with a 2.66 GHz and 1.15 
GHz clock frequency respectively. The details of the hardware designs for both computing 
systems are discussed next - categorized separately by CPU and GPU. 
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2.4.1 CPU Hardware Architectures The CPU hardware designs for System A and 
System B follow the same concepts, but System B is more advanced (see Table 1 and Table 2). 
These architectures both have multiple levels of cache memory, 2 levels for System A and 3 for 
System B, and different capacities [56, 57]. System B has greater cache memory capacity at all 
levels, and while both computing systems have the same memory I/O width. System B has faster 
memory devices - double that of the memory devices for System A [56, 57]. 

Both System A and System B have embraced the concept of multiple core architectures, 
but as with the memory structures System B is the more advanced of the two. A processing core 
can be viewed as a separate CPU executing in the same address space enabling the computing 
architecture to theoretically increase computational ability [9, 13], each core operates at a global 
clock frequency for the device - System B executes 6 processing cores whereas System A has 2 
[56, 57]. System A executes these cores as a higher clock frequency but System B has three 
times the number of cores - a faster design for the hardware level. 

Table 2 
System A - CPU hardware architecture 

Processor Clock 2.8 GHz 
Processing Cores 2 

LI Cache 256 KBs 
L2 Cache 2MBs 
Memory I/O 64-bit DDR2 SDRAM 

Table 3                                                                                                         , 
System B ~ CPU hardware architecture 

Processor Clock 2.66 GHz 
Processing Cores 6 
LI Cache 384 KBs 
L2 Cache 1.50 MBs 
L3 Cache 12MBS 
Memory I/O 64-bit DDR3 SDRAM 

2.4.2 GPU Hardware Architectures. The GPU hardware designs for System A and 
System B follow the same concepts, but System B is more advanced (see Table 3 and Table 4). 
These architectures both have processing cores in the hundreds to accommodate the massive 
computational power involved in optimizing throughput, however System B has more than three 
times the number offered by System A [58, 59]. System A has a faster clock frequency for each 
processing core but has a significantly lower number of these cores so the aggregate power of 
System B is greater regardless [58-61].    Each of these cores can be viewed as a separate 
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processor, but unlike the CPU, the GPU will execute the same instruction for all input until a 
reconfiguration occurs for the next large set of input [31, 35] hence less emphasis on memory 
management via cache hierarchies. 

Both System A and System B have wide memory I/O at 384-bits to sustain the high 
number of processes required to maximize throughput as a latency mitigation strategy prescribed 
by the DSB paradigm which the GPU follows. The memory device employed by System B uses 
the same input width but is faster than that of System A [58, 59, 61]. 

System B is part of the CUDA Compute Architecture 2.0, a metric used by Nvidia to 
categorize the device versions at both the software and hardware levels, whereas System A is 1.0 
- a significant difference [37, 62]. The higher Compute Architecture of System B allows more 
options, e.g. Nvidia set of libraries, and System B was the first GPU device to fully embrace 
general programming on the GPU (GPGPU) as it contained no video outlet, had double-precision 
abilities, and provided Error-Correcting Code (ECC) [25, 37, 62]. The GPU device architecture 
for System B is superior to that of System A. 

Table 4 
System A - GPU hardware architecture 

Processor Clock 1.35 GHz 
Processing Cores 128 

Memory I/O 384-bit GDDR3 
Register Count 8,192 
Shared Memory Banks 16 

CUDA Compute Architecture 1.0 

Table 5 
System B ~ GPU hardware architecture 

Processor Clock 1.15 GHz 

Processing Cores 448 

Memory I/O 384-bit GDDR5 

Register Count 32,768 
Shared Memory Banks 32 

CUDA Compute Architecture 2.0 

2.4.3 Hardware Design Summary The hardware designs for both systems presented 
reflects the general concept of the DSB and ISB paradigm for the CPU and GPU respectively 
resulting in different latency mitigation policies. Both System A and System B utilize cache 
memory hierarchies to mitigate latency for the CPU designs and both have processing core 
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counts in the hundreds to optimize throughput for the GPU designs, as per DSB paradigm. The 
memory I/O bus width is higher for the GPU hardware than for the CPU hardware, while they 
are equal in size to one another - System B has a faster memory device in both cases. System B 
is a more advanced hardware design for both the CPU and GPU devices in context of processing 
and memory. The next chapter will discuss the computational potential offered by the GPU via 
performance of the highest cost operation of the candidate application, as well as many HPC 
scientific and engineering computational modeling applications [20, 30, 48, 49, 63], the sparse 
matrix-vector multiplication. 

CHAPTER 3 

Computational Potential of GPU - Sparse Matrix-Vector Multiplication 

This chapter focuses on the computational potential offered by the GPU for 
computationally intensive applications such as the candidate application presented. The 
candidate application has highest computational cost at the point of the solution to system of 

linear equations that are presented in matrix form a%Ax = b. This sparse matrix system is solved 

iteratively using PCG in deference to the computationally prohibitive costs of using direct solver 
methodology - a common practice in HPC modeling applications [20, 30, 48, 49, 63]. 

The PCG solver is composed of matrix operations that should map well to the GPU 
device given it was created to execute massive numbers of matrix operations in tandem [1, 2, 7, 
24]. The Spare Matrix Vector Multiplication (SpMV) operation embodies the highest 
computational cost of the PCG solver, up to 90% of the total cost [25, 29, 48, 49, 63] - the 
minimization of this operational cost will provide a significant performance boost to the 
presented candidate application as well as many other HPC applications. However, mapping the 
SpMV operation to the GPU involves software factors, including software API CUDA, that are 
intimately related to underlying hardware architectures provided during the computational 
modeling application execution. 

3.1 Mapping Sparse Matrix-Vector Multiplication to GPU 

The SpMV operation is the highest cost component of the presented candidate 
application, as well as many HPC applications that employ systems of sparse matrices and the 
potential boost provided by utilizing the GPU as a co-processor has generated a lot of interest 
[21, 48, 49, 53, 54, 64]. The SpMV derives its high operational cost not from floating-point 
operations, as its instruction mix is poor [48]; rather the inefficient memory accesses are 
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culpable. Properly mapping such a high cost and computationally weak operation to a 
computationally powerful device like the GPU for optimal performance involves an 
understanding of the software as well as the underlying hardware. The CUDA API is the 

software API employed by the presented candidate application and is representative of this 
relationship. This is discussed in the context of the actual mapping of the SpMV algorithm to the 
CPU/GPU computing system next. 

3.1.1 The CUDA Software/Architecture API. The Nvidia CUDA Software API for 
general GPU programming is both a software and hardware system that uses higher level C 
language extensions to call lower-level OpenGL/DirectX libraries - accessing the GPU device 
[25, 37, 62]. CUDA maintains the C language concept of threads [62], but unlike the C 
language CUDA exposes the memory hierarchy to the developer [25, 37] which is a necessity as 
the GPU has no real virtual memory system and remains as flat as possible for the optimization 
of throughput. Despite the added complexity of an exposed memory hierarchy, CUDA freed 
developers from the necessity of translating general code to and from data-structures that the 
GPU understood i.e. column-major matrix operations, complete with model-view and matrix- 
stacks so necessary for lower-level graphics programming [31, 33-35]. 

CUDA GPU threads, memory, basic API syntax, and associated device hardware 
architecture are discussed in the following sub-sections. 

3.1.1.1 CUDA API thread hierarchy The GPU thread as defined by the CUDA 
architecture is different from the Light Weight Process (LWP) familiar to Operating System 
design [9, 37, 62]. The GPU has zero-cost context switching of threads because this is executed 
at the hardware level, commonly known as hardware multi-threading, whereas the Operating 
System paradigm of threads is one controlled by software either in user or kernel space naturally 
incurring overhead. Figure 14 from Nvidia [62] illustrates the hierarchical structure of threads. 
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Figure 14. Diagram of CUDA GPU thread grouping. 

The CUDA paradigm provides a direct mapping from logical constructs, such as the 
thread, to hardware architecture designs as shown in Figure 15, The large number of transistors 
dedicated to floating-point operations is grouped together as sets of Streaming Processors 
(SPs), defining the thread construct [61]. These SPs are grouped in sets of 8 to form sets of 
Streaming Multiprocessors (SMPs) - the domain of the Block [62], The largest logical 
construct, the Grid, is embodied by the groupings of SMPs [62] as shown in Figure 16. 

Hardware Logical Construct 

Streaming Processor Thread 
Streaming Multiprocessor Block 
Chip-Device Grid 

Figure 15. CUDA hardware to logical construct mapping. 
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Figure 16. CUDA hardware with logical Grid overlay. 

CUDA executes operations via 24-stage graphics pipelines each fully completing in 4 
memory clock cycles using a single SMP defining the logical unit of execution as batches of 32 
threads called a warp - 4x8 = 32 [37]. The CUDA paradigm increases parallel granularity, 
naturally extending from the single thread to the Block which is composed of sets of threads, to 
the Grid which is composed of sets of Blocks [37]. 

All threads in a Block are assigned to a single SMP, abstracted from the programmer, 
although multiple Blocks can be assigned to a single SMP [65]. The abstraction of the 
Block/thread/SMP construct is the dominate strategy to produce scalability of CUDA to different 
generations of GPU devices - the programmer need not know the exact number of SMPs to 
develop GPU-bound code as the hardware will schedule as needed [25, 65]. 

3.1.1.2 CUDA API memory hierarchy CUDA defines varying layers of memory that 
reflect both the underlying hardware architecture and logical threads [62]. Figure 17 from 
Nvidia, shows the overview of logical memory constructs to the underlying physical hardware - 
clearly the GPU is not equivalent to the CPU in memory complexity but does provide some level 
of layering [1,2, 62]. 
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Figure 17. CUDA GPU mapping of the physical and logical memory structure. 

The lowest level of memory in the defined hierarchy is the register file, composed of the 
set of registers for the SMP - each thread has mutually exclusive access to an on-chip register 
and local memory in read/write mode [2]. As with CPU hardware designs, the register is the 
fastest of the two on-chip structures with local memory costing approximately 20 to 50 clock 
cycles [1,2, 62, 66]. The next highest level of memory for the CUDA design is the shared 
memory structure. Shared memory is bound to a given Block and each thread has read/write 
access implying the need for synchronization to avoid race conditions [1, 2, 9, 62, 66] - the next 
set of memory levels are visible to all Blocks defined in the application. 

Constant and texture memories are both read-only with regards to the threads in any 
given Block but texture can yield some level of locality as the CPU has write access to this 
structure [2, 24]. Global memory, sometimes called device memory, has the highest capacity 
and clock cycle cost miming as high as 600 to 800 cycles per call [1,2, 62, 66] - global memory 
is the only area where the CPU and GPU can communicate using the Peripheral Component 
Interconnect Express (PCIe) bus. The PCIe bus is a well-known point of bottleneck in many 
CPU/GPU computing HPC applications employing sparse matrix systems [48, 53, 64, 67, 68]. 

3.1.1.3 CUDA API basic syntax The CUDA API is an extension of the C language 
invoking its own GCC -like compiler, e.g. NVCC, to compile high-level GPU Kernels to PTX 
machine independent code which is executed at runtime [38, 62] - CUDA recognizes GPU- 
bound code via keywords. These keywords are prepended to the C-like fiinction signatures [25, 
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62] defined as the GPU-bound Kernel and prior to calling must have memory set aside for the 

execution of each on the GPU device - as a <« Blocks, Threads >» structure. Figure 18 

illustrates an example usage of the GPU Kernel declaration and memory space allocation for a 
generic function. 

Function signature for CUDA Kernel with global keyword 

 global void myKernel (void) 

Calling Kernel with 400 Blocks composed of 128 Tlireads each 

myKernel«< 400,128 >» ( ) 

Figure 18. Example defining CUDA Kernel function signature and execution space. 

3.1.2 Algorithmic Strategies for SpMV Mapping. Mapping the SpMV operation to the 
GPU via the CUDA Software API presents the immediate challenge of how to distribute the 
matrix to the set of warps to be executed. A straightforward approach would apply a single 
thread per row, chunking the domain into sets of 32 - this is not the best approach as 
documented in [69]. As with [69], the SpMV operation is mapped to the GPU device using the 
one warp per row concept to obtain better utilization of the device resources - this is discussed in 
detail after the initial performance results. 

Details of the code used in this chapter to gather the performance results are presented in 
Appendix A and includes both the CSR and BCRS2x2 data compression formats. 

3,2 GPU Initial SpMV Performance Results 

The results of SpMV on the CPU/GPU for both machine system architectures, System A 
and System B, using the CSR data format are presented in this section with the goal of exposing 
the performance effects of software, hardware, and algorithmic factors using a consistent model 
in differing computing environments. These results are gathered using randomly filled sparse 
matrices with 50% sparseness, increasing in total matrix sizes from IK to 4K. 

Critical to understanding the observed results is the establishment of metrics to define 
performance benchmarking. Computational performance benchmarking for the GPU and CPU 
developments and resin flow infusion modeling for the remainder of this dissertation was 
accomplished as follows. 
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Normalized FLOPS: The raw count of floating-point operations is modified by clock 
frequency of the device being measured to address the variance in processor speeds for 
the GPU and CPU architectures. Equation (3.1) illustrates the normalization process 

described, denoted as FLOPS^^^^^, with FLOP^^^ the raw count of floating-point 

operations, C the clock frequency, and Tthe total execution time. 

FLOPS.. 
FLOP^„,xC 

(3.1) 

• KFLOPS: The approximate thousands of floating-point operations per second. As the 
GPU and CPU architecture vary in their processor speed, the KFLOPS is normalized by 
the clock cycle of the device being measured. 

• Speedup factor: The ratio of CPU execution time to GPU execution time whereby the 
larger the value, the more optimal the performance obtained through the GPU. 

System A is the first architecture examined followed by System B. 
3.2.1 System A. The CPU/GPU computing system execution of the SpMV operation was 

compared against the CPU-only version. The CPU-only environment is much slower than that 
of the CPU/GPU environment in every case as shown in Table 5. The CPU/GPU computing 
system increases in performance at an almost exponential rate, accelerating at the 2K matrix - 
this is consistent with previous findings of GPU performance on larger input models [1, 21, 22, 
70]. 

Table 6 
Time comparison for SpMV on System A (CSR compression) 
Matrix Rows CPU Time (ms) GPU Time (ms) Speedup Factor 
1024 9.479572 0.167552 56.5769 
2048 35.138212 0.069408 506.2559 
4096 148.453443 0.06912 2147.764 

3.2.2 System B. The CPU/GPU computing system execution of the SpMV operation was 
compared against the CPU-only version. The CPU-only enviroimient is much slower than that of 
the CPU/GPU environment in every case as shown in Table 6. The CPU/GPU computing 
system increases in performance at an almost exponential rate, accelerating at the 2K matrix - 
this is consistent with previous findings of GPU performance on larger input models [1, 21, 22, 
70]. 
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Table 7 
Time comparison for SpMV on System B (CSR compression) 

Matrix Rows CPU Time(ms) GPU Time(ms) Speedup Factor 
1024 1.6948 0.059648 28.41336 
2048 8.417524 0.055424 151.8751 

4096 30.3342 0.047872 633.6522 

3.3 Software Data-Structures/Layouts Factors 

The previous section of this chapter establishes an obvious benefit in performance when 
using the CPU/GPU computing system over CPU-only in both System A and System B 
computing environments. However it is necessary to understand how different software data- 
structures/layouts can affect performance in CPU/GPU systems in order to optimize for 
computationally intensive applications. The first software factor to be analyzed is one that is 
commonly touted in the GPGPU community- thread occupancy [37, 49, 71, 72]. 

The thread occupancy of a CUDA enabled GPU device is defined as a ratio of active 
warps to the maximum number oi warps supported by the Compute Architecture [37] - System 
A which is Compute Architecture 1.0, and System B which is Compute Architecture 2.0 support 
24 and 48 warps per SMP respectively [58-61]. The importance of thread occupancy can mean 
the difference of as much as 20-times performance boost [37, 73] . However, arbitrarily 
assigning the largest number of warps per block possible is the wrong approach. 

There exists a finite set of registers that are allocated for each of the thread blocks, and if 
each block requires many registers as defined by threads, the aggregate number of active blocks 
possible is reduced and correspondingly the occupancy is reduced and performance suffers [25, 
37]. For example, System A defines 8,192 32-bit registers for each SMP and can execute at most 

8192 
768threads meaning that at most  = [10.6666...]« 10registers can be used per thread to 

768 
achieve 100% occupancy.  The negative effects on performance can be further compounded by 
register spilling to device memory, increasing memory cycle counts hundreds of times [37, 62]. 
Both CPU/GPU computing systems architectures were determined to obtain maximum thread 
occupancy at 256 threads per block, a multiple of the warp size - providing the optimal access to 
local registers and avoiding costly code spills, allowing the hardware to properly coalesce 
memory addresses [62, 69]. 

Another software factor that can affect performance of a CPU/GPU computing system is 
the data compression format used - understanding this is vital to optimizing memory-bound 
applications such as the presented candidate application [2, 52, 74, 75].    As noted in the 
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introduction, the SpMV lends itself to several performance challenges - key to the data 
compression format is locality. The CSR data compression format has poor locality due to 
frequent address indirections and BCSR2x2 can mitigate this by lowering the number of memory 
loads per floating-point operation - simply by maintaining a 2x2 sub-block set rather than a 
single element [2, 52, 74, 75]. However, the benefits of using BCSR2x2 rely heavily on the 
existence of dense 2x2 sub-blocks in the original sparse matrix. 

The software factors of thread occupancy and data compression format were combined 
and executed on a randomly generated 4K sparse matrix defined with a 50% sparseness for both 
System A and System B. Table 7 and Table 8 shows the performance of these software factors 
for System A and System B respectively - Figure 19 and Figure 20 illustrate graphically the 
same results. Both System A and System B display increased performance as the number of 
threads per block grows evidence of better utilization of GPU computational resources. 
However, dramatic performance increases generated by growing thread occupancy occur at 32 
for System A and 64 for System B shown by Figure 19 and Figure 20 respectively - due to 
clock cycle execution which is explained in greater depth in section 3.5 of this chapter. The 
effect of changing data compression format from CSR to BCSR2x2 is greater for System A (see 
Figure 19) than for System B (see Figure 20) as the later defines an on-chip cache relegating 
locality mitigation to a lower impact factor for performance. These results clearly illustrate that 

software factors can have an impact on the CPU/GPU computing system's performance - the 
associated hardware factors are discussed next. 

Table 8 
SpMV time comparison per thread occupancy and data format (System A) 

Threads Per Block GPU Time (ms) - CSR GPU Time (ms) - BCSR2x2 
16 43.0042 15.7161 
32 0.1456 0.122944 
64 0.068736 0.125344 
128 0.080096 0.1272 
256 0.06912 0.179392 
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Figure 19. System A performance as threads per block increase (CSR and BCSR2x2). 

Table 9 
SpMV time comparison per thread occupancy and data format (System B) 

Threads Per Block GPU Time (ms) - CSR GPU Time (ms) - BCSR2x2 
16 18.6252 15.6434 
32 32.1774 29.8709 
64 0.057152 0.06192 
128 0.06928 0.063936 

256 0.047872 0.062208 
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Figure 20. System B performance as threads per block increase (CSR and BCSR2x2). 

3.4 Architectural Hardware Factors 

The CPU/GPU computing systems execute within differing environmental context for 
System A and System B and are important components in the resulting performance of SpMV. 
System B has a more advanced CPU and GPU architecture than System A, a 6-core CPU and 
Fermi GPU design versus a 2-Core CPU and Quadro GPU design for System B and System A 
respectively [56-61, 76]. In and of itself, this difference is irrelevant however when comparing 
System A to System B as these architectural hardware variations must be factored into the result. 

The architectural hardware design of System B defines a GPU device that provides extra 
hardware for context switching compared to the corresponding GPU device of System A. The 
increased switching hardware of the GPU device of System B is the manifestation of the double- 
pumped graphics pipeline described by the Fermi architecture [61]. Important to the sheer 
computational abilities are the number of processing cores of System B with 448 as compared to 
System A at 128 [61, 76] - the GPU device on System B has greater than 3-times the power of 
System A by this metric. 

The architectural hardware design of System B defines a more advance memory structure 
than the corresponding structure of System A and this is reflected consistently at every memory 
device [58, 60, 61]. System B and System A both have 384-bit wide memory I/O but System B 
has the faster GDDR5 memory versus System A with GDDR3 memory. The GDDR5 memory 

of the GPU device of System B operates at twice that of GDDR3 - therefore throughput of data 
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will be maximal for System B [58, 59]. The hardware design of the GPU device for System B 
has 4-times the number of registers than the corresponding GPU device on System A at 32,768 
to 8,192 for System B and System A respectively [58, 59] - these extra registers will provide 
more capacity for threads of a given warp as a register is thread-bound in nature [25, 66, 69]. 
Finally, the shared memory of the GPU device of System B is 3-times greater than that of 
System A at 49,152 to 16,384 bytes for System B and System A respectively - providing larger 
cache-like structure for System B [61, 76]. 

These hardware, software, and algorithmic factors when analyzed individually are 
important but it is within the context of the aggregate that the real importance is revealed. This 
interdependence of factors is discussed next. 

3.5 Interdependence of Software and Hardware Factors 

The previous sections of this chapter have established the importance of software, 
hardware, and algorithmic factors on resulting performance; however these factors are defined as 
interdependent. These factors work both independently and with one another to produce the 
observed performance results for SpMV in this chapter. 

Executing one warp per row rather than one thread per row, the dominant algorithmic 
factor with regards to mapping the SpMV operation to the CPU/GPU computing system provides 
a fuller utilization of the GPU device [37, 48]. The fuller utilization of the GPU is directly 
impacted by the hardware as the entire warp is now performing useful work and memory 
addresses are likely coalesced [37, 48]. The algorithmic factor is also impacted by the software 
factor of increasing thread occupancy during SpMV as memory is set aside in units likely to 
increase the use of more threads per warp. 

The software factor described by thread occupancy and data compression formats effect 
performance by increasing memory address coalescing and increasing locality - essentially 
altering the number of memory loads to the corresponding floating-point operations for SpMV. 
However, software factors are tied to the hardware with thread occupancy in the same way that 
the one warp per row is affected, and the impact of the data compression format change was less 
pronounced for System B than for System A. 

The hardware factors of both computing systems effects the performance of SpMV in 
two major ways - overall execution speed and impact of data locality. The GPU device of 
System B uses a double-pumped logical graphics pipeline that is expressed in hardware as extra 
context switch chip; so twice the data input per clock cycle is massaged by the larger number of 
processing cores of System B over that of System A. This performance difference is seen from 
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the data plots defined as Figure 19 and Figure 20 where the later executes at approximately half 
the time as the former. 

As stated previously in section 3.3 of this chapter, the mitigation of locality issues 
derived via the employment of BCSR2x2 data compression has a lower effect on performance 
for System B than for System A due to the presence of a hardware-level cache on System B that 
does not exist on System A [59-61]. An interesting artifact of the hardware, software, and 
algorithmic interplay can be seen when increasing the number of threads per block for System A 
and System B as shown in Figure 19 and Figure 20 respectively. The general performance in 
both cases is similar but shifted to the right for System B, e.g. address coalescing appears 
markedly improved at 32 threads per row for System A and 64 for System B - this differential is 
likely an artifact of memory device I/O. 

CUDA defines the unit of execution to be a warp which is a collection of 32 threads 
working simultaneously - coalescing memory addresses within this grouping [37, 62]. The 
memory device I/O employed by System B can execute twice for a single clock cycle [59-61] 
e.g. 32-bits per every 2-cycles means 16-bits for a single-clock cycle - each floating-point 
operation requires at least 32-bits as per the data-type; so the 32-bits metric can be extended as 
32-threads. System A employees a memory device I/O with single clock cycle execution, 
effectively creating a 16-to-32 comparison, thus System B will coalesce at double that of System 
A, i.e. 64 threads versus 32 threads. Related to the concept of memory address coalescing is 
shared memory banks. 

Shared memory is a software managed cache-like structure, heavily banked to align with 
the Single Instruction Multiple Data (SIMD) lane width of the processing core - as with 

address coalescing, proximity of these banks to thread accesses is important [25, 37]. These 
banks, sometimes called segments, execute optimally with address interleaving such that given 
^oatpointer fp in bank B and % being defined as the modulus operator, fp +1 points to the 

address at and [B +1)%16 and {B +1)%32 for System A and System B respectively - each bank 

holding a 4-byte access per cycle [37, 77]. Critical to performance using shared memory is the 
avoidance of bank conflicts which can present any time data access is not sequential. A bank 

conflict occurs when more than one memory access is made to the same bank in the same clock 
cycle - successive 32-bit words are shared among 16 banks for System A and 32 banks for 
System B [54, 61, 62, 69, 74, 77]. CUDA handles a bank conflict by serializing each of the 

contending threads, for example: given A'^ memory accesses and A'' unique shared memory banks 

bandwidth is increased by a factor of N with no conflicts but is decreased by — for each 
K 

K thread that requires serialization [37, 62, 77]. Figure 21 illustrates a bank conflict on a generic 
CUDA GPU device. 
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Figure 21. Block diagram of memory bank conflict for generic CUDA device 

Regardless of the individual  factors discussed, both CPU/GPU computing systems 
analyzed expose performance boosts for SpMV - as shown in Figure 22. 
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Figure 22. System A and System B Speedup factors for execution of SpMV operation 

This chapter has illustrated that execution of SpMV in the CPU/GPU computing system, 
the highest cost of the PCG iterative solver, displays impressive improvement over the CPU-only 
version. The factors of software, hardware, and algorithm have demonstrated inter-dependency 
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in regards to the resulting performance of SpMV - how these factors affect the full candidate 
solution for composite process flow modeling analysis is discussed in the next chapter. 
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CHAPTER 4 
Full Candidate Application - Single CPU/GPU Computing System 

This chapter focuses on the full solution to the candidate composite process flow 
modeling application within the context of a single CPU/GPU computing system for both 
System A and System B. The full solution of the computationally intensive candidate 
application is mapped to the CPU/GPU computing system and validated against an analytical 
solution for all computing systems involved. The validated application is then executed using 
System A and System B and the resulting performance is analyzed to determine how the 
hardware and software factors work together to impact the resulting application computational 
performance. During the mapping, key computationally intensive kernels are presented and 
associated GPU developments explored. 

This chapter will ascertain how the hardware architectures of System A and System B 
work together with the software factors to denote the application performance - key in this 
discussion is the calculation of a computational complexity analysis. The computational 
complexity analysis is actualized as a performance modeling equation that can be used to project 
how different problem, software, and hardware parameters will affect performance. 
Understanding these variations in factors/parameters is essential as new computing architectures 
arrive to get optimal performance for HPC applications in many legacy and new computational 
modeling codes / code developments. 

4.1 Mapping Full Candidate Application to GPU 

The mapping of the fiill candidate application to the single CPU/GPU environment is a 
natural extension from the previous chapter, detailing the mapping of the SpMV operation, in the 
single CPU/GPU environment for both System A and System B. Both of these mappings are 
done within the single shared address space CPU/GPU computing architectures and the SpMV is 
the largest component of the PCG iterative solver [48-50] and hence representative of the fiiU 
solution itself The presented candidate application employees the Concurrent Number 
Cruncher (CNC) GPU solvers package by Luc Buatois, et al [50] which uses a custom SpMV 
operation with CSR and BCSR2x2 data compression formats as well as Nvidia's CUBLAS 
library [78] for SAXPY and DOT-PRODUCT calls [50] (see Figure 23). Nvidia has recently 
released a library for sparse matrix operations known as CUSPARSE with restrictions to CUDA 
Compute Architecture of at least Version 1.1 [79]. System A falls into the CUDA Compute 

Architecture of 1.0, therefore in an effort to apply consistency across CPU/GPU computing 
systems the CUSPARSE library was not used in this study. 
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Figure 23. The CNC operational flow from input to output. 

The key computationally intensive Kernels presented in the CNC software as well as the 
process of mapping the presented candidate application to function in a CPU/GPU computing 
system are discussed next. 

4.1.1 Key Computationally Intensive Kernels. The most computationally intensive 
kernels of the full candidate solution are those that relate to the iterative PCG solver, as it is 

called {K X L) times with K the number of iterations for mass-convergence and L the number 

iterations for all nodes to be determined as filled (see Algorithm 2.1), as well as the number of 
CG iterations for each solution call to the linear equation solver. The SpMV is the largest cost of 
the PCG iterative solver and is ported to the local GPU device, as with the SAXPY and DOT- 
PRODUCT kernels, and called within the nested loop described in Algorithm 2.1, but the 
consideration of GPU code developments, software, and hardware factors is critical for optimal 
performance results. 

4.1.2 GPU Code Developments. The PCG iterative solver defmed in the candidate 
application is mapped and ported to GPU via the CNC code as shown in Figure 24. The CNC 
code is third-party software created using the C/C-H- programming language that embeds the 
CUDA Kernels within its design - the library header for the CNC package is simply placed as 
part of the preprocessor "include" calls and compiled with the proper CUDA library links using 
the NVCC compiler and an executable is created with separate GPU-bound code to leverage the 
local GPU device [37, 38, 50]. The CNC package solves the system of linear equations of the 

matrix form Ax = b receiving input matrix data from the calling C/C++ class file(s), executing 

the GPU device code, and retrieving the resulting solution vector for the CPU-bound code 
portion of the application [50].  The CNC package defmes the PCG iterative solver, as with all 
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PCG solvers [46], using multiple calls to the SpMV, SAXPY, and DOT-PRODUCT operations - 
the SAXPY and DOT-PRODUCT portions of the solver are examined next. 

4.1.2.1 CUBA Kernels of PCG solver The SAXPY and DOT-PRODUCT operations are 
defined in the Nvidia CUBLAS library [78] which is the CUDA version of the Basic Linear 
Algebra Subprograms (BLAS). BLAS is categorized by levels 1, 2, and 3 with level-1 consisting 
of vector operations, level-2 consisting of matrix-vector operations, and level-3 consisting of 
matrix-matrix operations [78, 80, 81]. CUBLAS follows the BLAS paradigm, defining the 
SAXPY and DOT-PRODUCT as level-1 category operations [78]. 
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Figure 24. Presented candidate application diagramming the placement of CNC Package. 

There are several steps that must be followed for any CPU/GPU computing system to use 
a CUDA library package which can be generalized as initialization, allocation, execution and 

finally retrieval of results [37, 62]. Initialization is the first step and is potentially heavy due in 
no small part to the sheer size of the library itself The CUBLAS library is quite large, 
containing the Shader Assembly (SASS) and PTX code for every Kernel defined in the library 
with PTX as much as 75% of the library size [37, 38, 62]. The SASS is the binary version of the 
library and PTX the intermediate to allow for differing GPU device generations and is loaded 
using a Just In Time (JIT) compiler construct - the driver has to locate and read the SASS 
binary for the particular GPU device and load it to the machine's board. Once the library is 
loaded, the CPU issues a command for the GPU device to allocate memory for the number of 
elements and the data-type that is to be used by the Kernel. The data is then passed to the GPU 
from the CPU via pointers as direct contact between CPU and GPU is not possible [24, 37, 62]. 
The kernel is executed from input data and passed back to the CPU host for use by the system - 
the GPU memory is not explicitly removed until another call to the allocation is made, the GPU 
is a state-machine by design [8, 31, 34, 35]. 
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The CUBLAS scalar DOT-PRODUCT function executes a single memory access for 
every arithmetic operation yielding an upper bound on performance that becomes the ratio of 
CPU to GPU memory sizes, typically ranging around 5 to 10 [37, 78, 82]. The cost of access to 
the data residing in CPU space erodes any performance boost. This is why the full 
implementation of the candidate application keeps data located in GPU space [50] - instead of 
multiple global accesses during the iterative phases of the solver, single calls are made at the 
beginning and end of the solver [50]. The computational cost of the scalar DOT-PRODUCT is 
negligible relative to the SpMV but its role in the PCG algorithm is invaluable as these 
computations are used to define the solution convergence of the linear equation system [46, 65]. 

The scalar DOT-PRODUCT is primary in the computation of residuals [46], applied in 
Algorithm 2.2 at lines 11 and 12. The closer the residuals are to zero, the more likely a solution 
has been located - however this assumption could become tenuous if the device employed is not 
fully compliant with IEEE-754 floating-point representation standards [83]. The potential for 
non-compliant floating-point operations using GPU devices is a valid concern [84] as GPU 
manufactures have never openly held to this compliance and this was never a concern [83, 85, 
86]. The typical high-res games redraw frames at up to 60-times a second [2, 24] so any visual 
artifacts produced by a slightly-off floating-point value would not be noticed even by the most 
perceptive human player. Once the GPU moved into the exacting analytics required of the 
engineering/scientific community, the formerly lax adherence to numerical accuracy standards 
needed to be tightened. The algebraic representation of the scalar DOT-PRODUCT operation is 

shown in equation (4.1) with ^and B vectors each of lengths . 
n 

A*B^Y,A,B,=AiBi+A^B,+--- + A^B„=AB^ (4.1) 

Nvidia has long maintained that its GPU devices held fast to the IEEE standards but 
admitted that the more accurate double-precision representation was not supported [86], at least 
until the advent of the Tesla Fermi architectural designs [60, 61]. These architectures are not 
only double-precision compliant they contain Error Correcting Code (ECC) adaptations to avoid 
propagation of small numerical inaccuracies [59]. 

Perhaps counter-intuitively, the real instantiation of floating-point inaccuracies involving 
the scalar DOT-PRODUCT is the addition portions of the operation rather than the 
multiplication [13, 45, 87]. The reason is the potential for alignment error when normalizing the 
result to be 127-biased [13, 87]. Figure 25 shows an example conversion from a base-10 
floating-point number to the corresponding base-2 representation with applied 127-bias. 
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Figure 25. IEEE conversion from base-10 to base-2 with normalization. 
Unfortunately, even full compliance of IEEE standards for floating-point representations 

is no guarantee of full accuracy in every case [45, 87]. 

Paraphrasing work by Anthony M. Castaldo [87], given two numerals with exponents 

£1,^2 such that e, > 62 the number of bits to exceed the scale of the returned value is e, -e^ this 

is the number of zeros that the smaller numeral will be padded to on the left to properly align. 
Therefore, if the value of smaller operant is just one greater than the bits of the mantissa it adds 
nothing to the resulting addition. Supposing the 32-bit format, if the aforementioned exponents 
differ by 24 or more, the answer will be the larger of the two ~ the other operant is completely 
ignored in the result. The operation still ascribes to the IEEE-754 standard but is completely 
erroneous with regards to small numerical variations in the long term; particularly sensitive to 
these perturbations are large clustered machines where the error can magnify as it progresses 
through the system, known as a soft error [84] - hence contributing to the importance of ECC 
adaptations. 

The CUBLAS SAXPY operation executes a scalar multiplication and addition with 
vectors as shown in equation (4.2) with y and x vectors and a the scalar. The CUBLAS version 

of this level-1 BLAS operation is generalized to allow for incremental steps in both x and y 

directions, i.e. an array stride [78, 88]. These extra levels of indexing could cause a slight drop 
in performance but is a trade-off to the generality provided by the library. The SpMV operation 
is the same used in the previous chapter - complete with the same determination of optimal 
thread occupancy. 

y<r-ax + y (4.2) 

The fiill candidate application is validated against an analytically derived solution for a 
simple 2D unstructured mesh model consisting of radial center injection in a thin circular plate 
mold geometry using the single CPU/GPU computing system next. 
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4.2 Validation of Full Candidate Application on Single CPU/GPU 

The correctness of the full candidate application for the single CPU/GPU computing 
systems is ensured via the examination of tlow-front progression and injection port pressures of 
numerical solutions for CPU and GPU against the correspondingly analytical results. The model 
used for validation is simple 2D circular plate mold geometry with a center, radial injection and 
is compared with the resulting analytical equation. 

The simple circular plate model has a radius of 10 cm and an inner radius of 0.15 cm for 

the radial injection port as shown in Figure 26. The inner radius, i?g, is subjected to a constant 

radial flow rate2- The thickness of the cavity is//, the injection inlet pressure is P, and is a 

function of transient resin infusion time, resin viscosity is /i, the permeability of the fiber 

preform is K, and the porosity of fiber compaction is ^.   The flow front radial location at any 

time / is given by [89]: 

R(t)- Qt 
7T(I)H 

Rl (4.3) 

The corresponding expression for injection pressure, which varies with time, is given by [89]: 

Po = 

fw~   ' 

(4.4) 

Figure 26. 2D circular plate vahdation model (not to scale). 

The following physical parameters are used in this analysis: 
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cm 
Q = 2.4 , penneabilityi: = 44.0e-08cm , a viscosity// = Q.QlPaS, a porosity of^ = 0.805, 

sec 

a time step A/ = 0.5 , and an element thickness// = 0.742cm . The circular plate model involved 
a computational mesh of 1,344 nodes and 2,560 3-noded triangular elements.   Figure 27 and 
Figure 29 display the flow-front progression showing the computed and analytical variation of 
the radial flow front location with respect to time for System A and System B respectively and 
clearly define accuracy with the analytical solution.    Figure 28 and Figure 30 display the 
corresponding transient inlet injection pressure for System A and System B respectively and 
clearly define accuracy of the computational solution. 

The flow-fi-ont and inlet injection pressure values are accurate for this circular plate radial 
injection geometry. Other complex flow modeling geometries also showed equivalent 
comparison of the flow front progression and the predicted fill time between CPU/GPU based 
computational solutions for the same geometry and problem parameters employed. 
Computational performance modeling performance of the fiill candidate solution for the single 
CPU/GPU computing systems is presented next. The initial performance evaluations were 
conducted using the single CPU/GPU computing systems. 
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Figure 27. Validation of single CPU/GPU for flow-fi-ont progression (System A). 
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Figure 28. Validation of single CPU/GPU for inlet injection pressure (System A). 
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Figure 29. Validation of single CPU/GPU for flow-front progression (System B). 
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Figure 30. Validation of single CPU/GPU for inlet injection pressure (System B). 

4.3 Initial Full Candidate Application Performance on Single CPU/GPU 

The results of full candidate application on the single CPU/GPU for both computing 
system machines, System A and System B, with unstructured meshes MA, MB and lOFT as 
input model data and the GSR data compression format are presented in this section with the goal 
of exposing the performance effects of software, hardware, and algorithmic factors using a 
consistent model in differing computing environments. Clearly, the most salient metric of 
performance measures for scientific and engineering applications where analysis time is 
concerned is the direct measure of computational solution time. However, due to the inherent 
processor differences in terms of clock speeds, benchmarking different hardware is difficult to 
quantify. Total computational time employed also depends on the cost of arithmetic operations 
in different architectures that can vary, and detailed information in commodity processors used in 
this work are proprietary [66, 72, 88]. A comparison of the Floating-Point Operations rate 
(FLOPs) may also be misleading in diversified architectures with different clock frequencies - 
therefore FLOPs are normalized by the clock rate as defined in section 3.2 of chapter 3. 
Normalizing FLOPs helps to avoid idiosyncrasies of individual hardware, to provide arithmetic 
power comparisons. Execution time depends on processor speeds and normalized FLOPs allow 
for a more definitive comparison over wall-clock time or FLOPs. 

The single CPU/GPU computing system defined as System A is examined first followed 
by System B. 
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4.3.1 System A. The single CPU/GPU computing system execution of the fiill candidate 
apphcation was compared against the CPU-only version. Table 9 shows that the GPU 
outperforms the CPU-only system for process flow modeling analysis employing input mesh 
MA, MB, and lOFT when examined with regards to total solution wall-clock time. Both flow 
modeling analysis obtained same flow progression contours and predicted infusion time for the 
same physical problem parameters employed in all cases. The superior arithmetic power of the 
GPU for this single CPU/GPU computing system is clearly visible in Table 10, presenting an 
advantage of more than 9-times the number of KFLOPs, which have been normalized as per 
section 3.2 of chapter 3, in the GPU compared to the CPU. 

Table 10 
Full solution performance with single CPU/GPU and CSR compression (System A) 
Unstructured Mesh CPU Time (sees.) GPU Time (sees.) Speedup Factor 
MA 6,176.46 418.44 14.76 
MB 81,929.7 4,219.61 19.42 
lOFT 6770.31 285.17 23.74 

Table 11 
Full solution KFLOPs with single CPU/GPU and CSR compression (System A) 
Unstructured Mesh KFLOPs (CPU) KFLOPs (GPU) 
MA 142.26 1,169.56 
MB 133.39 1,292.44 
lOFT 135.92 1,186.73 

4.3.2 System B. The single CPU/GPU computing system execution of the full candidate 
application was compared against the CPU-only version. Table 11 shows that the GPU 
outperforms the CPU-only system for mput mesh MA, MB, and lOFT when examined with 
regards to total solution wall-clock time. The superior arithmetic power of the GPU for this 
single CPU/GPU computing system is clearly visible in Table 12, presenting an advantage of 
almost 3-times the number of KFLOPs, normahzed as per section 3.2 of chapter 3, for the GPU 
compared to the CPU. 

Table 12 

Full solution performance with single CPU/GPU and CSR compression (System B) 
Unstructured Mesh CPU Time (sees.) GPU Time (sees.) Speedup Factor 
MA 424.93 168.57 2.52 
MB 6,414.74 1,197.35 5.36 
lOFT 627.83 105.09 5.97 



Table 13 
Full solution KFLOPs with single CPU/GPU and CSR compression (System B) 

Unstructured Mesh KFLOPs (CPU) KFLOPs (GPU) 
MA 2,299.38 3,213.32 

MB 1,891.28 5,046.01 
lOFT 2,142.75 4,743.81 

4.3.3 Initial performance analysis. The execution of the unstructured mesh input files, 
MA, MB, and lOFT for both computing systems exposes some common performance behaviors 
- most notably the correlation to problem size and performance. System A and System B 
produce better performance using total solution time and normalized FLOPs as metrics when the 
problem size increased. This performance boost for increasing problem size is reflected in the 
previous chapter's analysis of the SpMV for both CPU/GPU computing systems as well as 
though out the published literature regarding GPU performance [2, 25, 67, 90]. However, there 
are some differences with the magnitude of the performance boost found. System B has a lower 
speedup factor and KFLOPs change than does System A. Likely this is due not to any defect of 
System B but rather the more advanced CPU used - the dual-core CPU of System A is so 
lacking in relation to the GPU that the speedup factor must be greater. 

4.4 Software Data-Structures/Layouts Factors 
This previous section was an initial performance analysis for three unstructured mesh 

model inputs via the single CPU/GPU computing systems defined as System A and System B 
and produced some good performance boosts, especially for System A. However, the initial 
software variables need to be examined to identify potential factors that can hinder performance 
of the presented candidate application. The first software factor to be examined is data 
compression format. 

The initial performance was executed using CSR, a data compression format with a noted 
proclivity for poor computational intensive performance [53, 54] - this has been shown to 
improve with BCSR2x2 due to increased locality [52-54]. The presented candidate application 
generates systems of equations based on 3-noded triangular elements each with 1-degree of 
freedom resulting in dense sets of sub-blocks in the sparse matrix [44, 45] - a potential boon for 
locality using BCSR2x2. 

The presented candidate application generates dense sub-blocks of non-zero elements via 

the methodology of the Finite Element Method (FEM) - initial collections of 3x3 local 
element matrices result from 1-degree of freedom applied to the input 3-noded triangular 
elements [44, 45]. These local element matrices are coalesced into a global element matrix that 

maintains symmetry Ixom these 3x3 sub-matrices [44, 45] - the 2x2 sub-blocks utilized by the 

185 



BCSR2x2 data compression will be subsumed by the dense sub-matrices of the global element 
matrix. The application of data compression formats to improve locality is closely associated to 
memory address coalescing and thread occupancy as all of these seek to maximize throughput by 
grouping as many threads as possible, however the CNC GPU solver requires multiple Kernels 
which forces a schism to these groupings. 

CUDA places implicit barriers between dependent Kernel invocations [37], e.g. Kernels 
that rely on one or more currently executing Kernels must wait for system synchronization to 
occur before continuing [62, 65]. This new software factor subsists with the PCG iterative solver 
because it is composed of not just the SpMV Kernel but a number of CUBLAS calls executed in 
sequence. System B, as part of the CUDA Compute Architecture 2.0, can simultaneously apply 
Kernels using the CUDA stream [60, 61] but this is not a luxury offered by System A [62, 76]. 
Therefore, to maintain as much consistency of variables between systems, these stream 
constructs were not employed in the present work. The role of the data compression format is 
discussed next. 

Figure 31 and Figure 32 show the execution time for System A and System B 
respectively revealing a distinct difference in the performance benefit of changing from CSR to 
BCSR2x2 for each of these CPU/GPU computing systems. Figure 31 shows the performance 
boost of increased locality for the presented candidate application expressed as the BCSR2x2 
data format for input meshes MA and MB with negligible effect for the less regular lOFT mesh 
configuration whereas Figure 32 describes a deleterious result for meshes MA and MB - again 
lOFT is negligibly affected. This difference in performance is surprising from a pure locality 
approach as the dense sub-blocks created by the 3-noded triangular elements are the same for 
both System A and System B - the arithmetic power leveraged by the different CPU/GPU 
computing systems via the normalized FLOPs is shown in Figure 33 and Figure 34 for System A 
and System B respectively. 

System A shows a much higher rate of floating-point operations when going from CSR 
to BCSR2x2 than System B for the corresponding change (see Figure 33 and Figure 34) - 
excepting the lOFT model mesh configuration which illustrates negligible difference in both 
computing environments. System B manifests a negligible increase in normalized FLOPs for the 
BCSR2x2 format and a decrease in performance - given the relative regularity of the input mesh 
configuration; this implies an initially poorer locality for System A. The lower impact of the 
locality change for System B is likely due to the implementation of an actual cache as per the 
Nvidia Fermi architecture [60, 61]. The negligible change for the lOFT input mesh supports a 
correlation not just to the size of the problem domain but the expressed regularity of the matrix. 
The hardware factors on performance for both System A and System B are discussed next. 
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Figure 31. Full candidate solution performance (System A). 
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Figure 32. Full candidate solution performance (System B). 
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Figure 34. Full candidate solution KFLOPs performance (System B). 

4,5 Hardware Architectural Factors 

The observed performance of the CPU/GPU computing systems using the unstructured 
mesh configuration defined by MA, MB, and lOFT is affected not just by the software factors 

discussed in the previous section but hardware factors as well.    The presented candidate 



application resulted in a performance boost for both System A and System B when using the 
CSR format albeit to a smaller degree for System B - excepting the negligible results observed 
for the less regular input mesh lOFT in both computing environments. However, when the 
BCSR2x2 format was employed the performance of System B dropped while System A 
increased - fairly regular geometries, consistent models and software factors were used leaving 
the underlying hardware architectural factors as culpable. 

System B has a cache defined at the hardware level [60, 61] whereas System A does not 

[58, 76] - this has great impact on solutions involving sparse matrices such as those applied via 
the presented candidate application [54]. A hardware-level cache provides the ability to stash a 
process during execution and quickly retrieve it when needed rather than calling global memory 
read/writes at every instant. The more advanced architecture of System B does not negate the 
importance of judicious application of software factors, but it does alleviate it somewhat. The 
lowered importance of locality on System B, expressed using BCSR2x2, adds all the 
computational overhead of extra loops to iterate over defined sub-blocks but none of the 
corresponding utilization of greater arithmetic units and hence none of the predicted performance 
seen in System A. 

The software and hardware factors encountered during the execution of computationally 
intensive applications using CPU/GPU computing systems are typically difficult to quantify and 
as such defining concrete metrics for performance on these system is difficult. The formulation 
of an expected performance equation is discussed in the next section. 

4.6 Computational Complexity Analysis 

Computational complexity has historically been quantified using asymptotic analysis to 
understand how the design scales [91], but this methodology relies on axioms that do not exist 
for GPU computing such as constant operations yielding negligible costs to overall performance 
[92]. Adjusting the number of threads per block can allow CUDA to coalesce memory addresses 
resulting in as much as 20-times reduction in execution time [72] - small changes can have big 
impacts on the algorithm [66]. Therefore quantifying algorithmic behavior is relegated to the 
minutia of performance modeling as standard parallel modeling techniques fail to take into 
account the importance of limited and high access costs to the exposed memory hierarchy of the 
modem GPU [16, 72]. 

Currently there is no standard for performance analysis for use with GPGPU computing, 
however options have been published [16, 66, 67, 72, 93] and this study follows many of the 
concepts put forth in these works. The code that is ported to the GPU(s) for this research is 
broken up into its major components, analyzed, and relevant parts re-assembled to form a 
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general performance model. The single CPU/GPU computing system is studied first and expands 
to the multiple CPU/GPU computing system in the next chapter. 

The following sub-section will derive a mathematical model for a single call to the PCG 
iterative solver rather than the whole solution and is detailed in Appendix A. This approach 
yields a base equation from which the different behaviors for different parameters can be 
determined. The third party CNC software was used for the results being analyzed which defines 

16x16 thread blocks [50] - this is the assumed constant for all derived equations. 

4.6.1 Single call to PCG solver. Computing the average number of non-zero elements 

for a given sparse matrix that is assumed to be square with 16x16 thread blocks, i?^^ withG,„^^, 

M are the number of bytes in global memory and the total number of rows respectively - using 
bytes as the metric defines the numerical values of 4 given that there are 4 bytes for every 
floating-point data type expressed in equation (4.5). 

«„.M«jl.G.,.-li<ipil| (4.5, 
[ (4 + 4)xMj 

Commuting \hQ number of blocks, Ng,m\h N,, N^^., and N^^^^ the number of threads per warp, 

the number of warps per block, and the total number of symmetric multiprocessors for M rows 

and average non-zero entries per row as i?^^ columns can be defined by equation (4.6). 

^s ^ ,,     ,,    "t 4.6) 

Computing the cycle cost based on the defined cost of sparse matrix-vector computational costs 

for the serial CPU at 2X(A^^.^^^^ X A^) [46, 91] and using a global memory cycle count of 500 

based on the average for the actual data range of 400 - 600 is Cj,, with B the number of threads 

per block expressed in equation (4.7). 

'500 + M' 
\_, j. — z.y^ (4.7) 

/5 

Computing the total cost for execution of preconditioned conjugate-gradient solver on GPU, 

^peg withA^,i? and £)the total number of iterations for convergence, memory clock frequency, 

and number of cycles per pipeline can be defined by equation (4.8). 

1 f 
C     =Kx 

peg 
NB^^S,.P^C,X-^-^\ (4.8) 

Equation (4.8) is not exact but does reflect many of the same performance modeling equations in 
published works [66, 72]. 

Figure 35 and Figure 36 depict a comparison of actual to estimated performance time for 
System A and System B respectively using unstructured mesh configuration MA, MB, and 
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lOFT expressed with the CSR data compression format. The results are not exact, as the thread 
dispatch policy for both GPU devices is non-public information [72, 93] and is interleaved for 
optimal throughput [2, 37, 55]. In addition, synchronization costs between dependent Kernels of 
the PCG iterative solver are not published. The issue is fiirther compounded with an assumed not 
large but with an unknown dispatch policy. The approximate nature of the results provided by 
the derived performance model demands the examination of normalized error which is computed 

\A,-E\ 
by^ — with A^ and E^ defining the actual and estimated times respectively. 

A 

Figure 37 and Figure 38 show the normalized error of the single PCG call for System A 
and System B respectively and indicate values of less than 50% which is a manageable amount 
of error for the given input data - the data results are shown in Table 14 for System A and Table 
15 for System B. The next section extends from the single call to the PCG iterative solver and 
mathematically models the full candidate solution. 
Table 14 
GPU device limits for both systems 

System A: Compute Architecture 1.0 System B: Compute Architecture 2.0 

Core Clock Rate =1.35 GHz Core Clock Rate =1.15 GHz 

Total Warps = 24 Total Warps = 48 

Total SMP= 16 Total SMP = 14 

Shared Memory per Block = 1024 Shared Memory per Block = 1024 

Registers per Block = 512 Registers per Block = 256 

Shared Memory Banks = 16 Shared Memory Banks = 32 
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Figure 35. Performance modeling of single call to PCG solver (System A). 
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Figure 36. Performance modeling of single call to PCG solver (System B). 
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Figure 37. Normalized error for single call PCG modeled performance (System A). 

Figure 38. Normalized error for single call PCG modeled performance (System B). 
Table 15 
Performance modeling of single calls PCG (System A) 
Unstructured Mesh Actual Time (ms) Estimated Time (ms) 
MA 0.888224 0.920487534 

MB 2.45664 3.545509018 
lOFT 0.938336 1.008680919 
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Table 16 
Performance modeling of single calls PCG (System B) 

Unstructured Mesh Actual Time (ms) Estimated Time (ms) 

MA 0.470848 0.442022833 

MB 1.160256 1.702796988 

lOFT 0.374528 0.484375628 

4.6.2 Full Solution Cost - Single GPU. The final modeling performance equation for a 
single CPU/GPU computing system is derived from the estimated single call to the PCG 
computed from equation (4.8). The size and granularity of the local GPU device registers are 
significant to the number of active threads for utilization of computational resources and is 

defined by equation (4.9) with Rg^n^^ the register allocation unit size and W^^^^^,^^  the warp 

allocation granularity - both of which are found in hardware specifications [37, 62]. 

^S alloc 

^- ~ w. 
(4.9) 

granular 

Equation (4.9) is a major component of a defined conditional function that models the 

serialization of threads within the warp construct shown as equation (4.9.1) with N^^^  the 

number of active thread blocks per SMP and A'',,^   = M ^ 
N. 

W    = pen 

IF 

ELSE 

N N 

I 

x^„ 

(4.9.1) 

Equation (4.9.1) is passed to the Gaussian distribution adapted to model the performance 
behavior of the single CPU/GPU computing system defined as equation (4.9.2). 

1 4 R growth v^^ rxe (4.9.2) 

Computing the total cost for execution of solution [93] with multiple calls to the GPU-enhanced 

PCG, T^^^ with it the total number of iterations for full solution convergence - equafion (4.9.3) 

defines the final performance modeling equation for a single CPU/GPU computing system. 

T^gpu -V^^ Cpcg }^ ^gromh (4.9.3) 
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Figure 39 and Figure 40 depict the results of the actual to estimated execution times for 
the solutions of unstructured mesh configurations MA, MB, and lOFT for single CPU/GPU 
computing systems executing in System A and System B environments respectively. The 
formed finite element matrices for the input data meshes being solved via the presented 
candidate application are expressed using the CSR data compression formats in all cases. 

The observed results of performance modeling for both CPU/GPU computing systems 
show a close equivalence of actual to estimated solution times. Both System A and System B 
showed dramatic decreased difference of estimated and actual time as the size of the input data 
increased - an inverse relationship that corroborate the premise that the underutilized and non- 
coalesced memory accesses can be expensive [62, 66, 72, 93]. The more intense the floating- 
point operations, the more fully utilized the CPU/GPU computing system resources are and the 
better chance of address coalescing. The increased number of input data elements being solved 
mitigates the impact of extraneous variables such as threaded time-sharing policies and equation 
(4.9.3) becomes the dominating predictor for the single CPU/GPU computing system for the full 
solution of the candidate application. Figure 41 and Figure 42 shows dramatic decrease in 
normalized error between the actual and complexity analysis predicted results for both System A 
and System B respectively support this precept - Table 16 and Table 77 are the actual results. 
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Figure 39. Performance modeling single CPU/GPU full solution (System A). 
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System B: Performance Modeling 
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Figure 40. Performance modeling single CPU/GPU full solution (System B). 
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Figure 41. Error single CPU/GPU full solution modeled performance (System A). 
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Figure 42. Error single CPU/GPU full solution modeled performance (System B). 

Table 17 
Performance modeling single CPU/GPU full solution (System A) 

Unstructured Mesh Actual Time (sees) Estimated Time (sees) 

MA 204.69 157.30 

MB 1,804.05 1,760.76 

lOFT 140.55 135.78 

Table 18 
Performance modeling single CPU/GPU full solution (System B) 

Unstructured Mesh Actual Time (sees) Estimated Time (sees) 

MA 146.64 75.25 

MB 974.90 843.17 

lOFT 89.23 75.29 

4.6.3 Contribution of Hardware Factors. This section establishes a relationship to 
hardware factors and the resulting application performance via the derived equation (4.9.3), 
adjusting  hardware variables  and then projecting  against the  actual  performance  of the 
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application. The resulting differentials are analyzed and the impact of the adjusted parameter(s) 
on performance of the CPU/GPU computing system is theorized. 

4.6.3.1 Single PCG Call. The first performance modeling that is adjusted for hardware 
factor(s) changes is the single call to the PCG solver, since this is used to build the final full- 
solution model (see equations (4.8) and (4.9.3)). The number of SMP chips was adjusted to be 
greater than and less than the current number defined in both single CPU/GPU computing 
systems for a single call to the PCG iterative solver to determine the theoretical effect the SMP 
counts have on the resulting performance. 

The behavior expressed by both System A and System B computing systems was similar, 
excepting of course the faster nature of System B [58-61, 76]. Figure 43 shows that reducing the 
number of SMPs to 4 for System A resulted in an increase in execution time, exacerbated by the 
larger input of unstructured mesh MB. This same reduction in SMPs on System B shown by 
Figure 44 resulted in a similar increased execution time and, as with System A; the larger model 
configuration MB had a greater impact. The observed performance change for both System A 
and System B as a result of this adjusted hardware factor is as expected given the larger model 
mesh MB presents more elements for a relatively low number of SMPs - SMPs are the physical 
equivalent of the logical block [37, 62] so lower counts manifest less computational power that 
will be fiarther debilitated applied in larger problem space provided by input mesh MB. The 
converse is observed by increasing the number of SMPs to 64 for both System A and System B, 
as before this is no source of consternation - more computational power will naturally be 
leveraged by a larger enviroimient in which to be expressed. 

The hardware factor of SMPs at the level of a single call to the PCG iterative solver 
extends naturally to the performance of the full candidate solution. The Ml candidate solution 
subsumes the single PCG call and works in tandem - result expressed as a magnification, a 
constant, or abrogation to resulting performance. The full candidate solution hardware factors 
for the single CPU/GPU computing system are discussed in the next sub-section. 
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Figure 43. Performance model for single PCG solver on System A (SMP adjusted). 

System B: Influence of SMP 
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Figure 44. Performance model for single PCG solver on System B (SMP adjusted). 

4.6.3.2 Full solution - single CPU/GPU. Adjusting the hardware factor(s) for the full 
candidate solution and the resulting impact(s) on the performance is modeled in this sub-section. 
As with the previous sub-section the number of SMPs is adjusted and the resulting theoretical 
performance is examined to deduct the relative impact of this factor on behavior for both single 
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CPU/GPU computing environments for System A and System B. Equation (4.9.2) defines the 
most direct access of the number of SMPs to the full candidate solution as a rate of 
growth/decay. 

The fiiU solution performance model given by (4.9.3) applies the Gaussian distribution to 
the overall performance of the system with the determination of serialized threads within a warp 
defined as the allocated register unit size for the given GPU device - the ratio of SMPs directly 
impact the value of this allocated unit size as fewer SMPs coerces lower unit sizes and less 
computational ability and vice versa. SMPs are given this position in the performance 
complexity model as each will provide a factor to the initial single PCG solver call, modeled by 
equation (4.8). Examining the performance results in Figure 45 and Figure 46 reveal a 
comparable behavior to that observed for the single PCG call discussed previously but to a much 
less magnitude. 

The single CPU/GPU computing system environments defined by System A and System 
B express a performance boost for an increased number of SMPs and a higher execution time for 
decreased numbers of SMPs. However, the full candidate solution is less affected by this 
hardware factor change as was with the single PCG call with input mesh configuration MA 
yielding negligible results for System A and System B; the input mesh lOFT mesh configuration 
now reflects the performance comparable to mesh configuration MB. 
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Figure 45. Performance model for full candidate solution on System A (SMP adjusted). 
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Figure 46. Performance model for full candidate solution on System B (SMP adjusted). 

4.6.4 Contribution of Software Factors. This section establishes a relationship to 
software Jactors and the resulting application performance via the derived equation (4.9.3), 
adjusting hardware variables and then projecting against the actual performance of the 
application. The resulting differentials are analyzed and the impact of the adjusted parameter(s) 
on performance of the CPU/GPU computing system is theorized. 

4.6.4.1 Single PCG Call. The number of threads per block is an obvious software factor 
to adjust as this is can be related to memory address coalescing and can be viewed as another, 
less direct application of thread occupancy. The theoretical performance results of both System 
A and System B corroborates documented performance regarding number of threads per block 
[48, 49, 65, 66]. Lowering the number of threads per block to 128 from the optimal 256 
increases theoretical execution time for the single PCG solver and increasing to 768 boosts 
performance, modeling the effect of hardware coalescing of memory addresses [62, 77]. This 
software factor is manifest for both System A and System B computing environments as shown 
in Figure 47 and Figure 48 for System A and System B respectively. 

The influence of the given software factors is clearly evident at the single PCG solver call 
level, the next sub-section discusses the full candidate solution. 

4.6.4.2 Full solution - single CPU/GPU. Adjusting software factor(s) for the full 
candidate solution and the resulting impact(s) on performance is modeled in this sub-section - 
the number of threads per block is altered.   The effect of this software factor is similar to the 
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observed results for the single PCG solver call - smaller numbers of threads express lower 
performance whereas greater numbers yield a performance boost. 

The observed hardware and software factors work together with the defined 
computational algorithm to effect performance - this interplay of factors is discussed in the next 
section. 
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Figure 47. Performance model for single PCG solver on System A (Threads adjusted). 
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Figure 48. Performance model for single PCG solver on System B (Threads adjusted). 
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System A: Influence of SMP 
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Figure 49. Performance model for full candidate solution on System A (SMP adjusted). 
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Figure 50. Performance model for full candidate solution on System B (SMP adjusted). 

4.7 Performance and Relation to Software and Hardware Factors 

The resulting performance of the single CPU/GPU computing system is directly tied to 

the interplay of software and hardware factors of the environments in which they executed and 

are related in this sub-section. Hardware factors such as the addition of SMPs and increasing 
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memory provide the context in which software factors can express further optimization and 
software factors such as increasing thread occupancy and data compression formats that can 
increase locaHty allow device architectures to apply low-level features like hardware multi- 
threading for maximal memory throughput. 

Equation (4.9.3) accommodates a mathematical model to map theoretical performance 
changes as hardware and software variables are altered, allowing the developer to better 
understand the effects different software and hardware constructs for HPC computational 
modeling applications using CPU/GPU computing systems. The development of predictive 
models for computing follows three general approaches - analytical, profile, and simulation 
based categories [92]. 

Simulation-based performance prediction uses an application that has modeled the 
objective architecture in exacting detail and generates results from dynamic and random inputs - 
accurate but computationally costly [92]. Profile-based performance prediction uses two stages 
to develop the model; instrumentation is utilized to generate statistical information on a given 
program run and analysis is used on these statistics to create an estimation of performance for a 
given architecture [92]. The analysis-based performance prediction model derives a 
mathematical equation that can estimate program behavior for specific architectures and 
algorithms - this is the model utilized in this chapter and follows precepts established by the 
worksof[66, 72, 92, 93]. 

All of the following discussions on the effects of hardware and software factors and any 
resulting interplay are derived from altering the variables of equation (4.9.3) and illustrate 
theoretical performance as consequence. The software factor Threads-Per-Block are denoted as 
TPB and the theoretical change exhorted by different parameters is given as ETime in the 
following discussion. 

Table 20 categorizes the hardware factors with System A as the computing environment 
contrasting the actual solution execution time against the effective time generated by the 
alteration of input variables and is shown in milliseconds. Table 21 categorizes the software 
factors with System A as the computing environment contrasting the actual solution execution 
time against the effective time generated by the alteration of input variables and is shown in 
milhseconds. 

Table 22 categorizes the hardware factors with System B as the computing environment 
contrasting the actual solution execution time against the effective time generated by the 
alteration of input variables and is shown in milliseconds. Table 23 categorizes the software 
factors with System B as the computing environment contrasting the actual solution execution 
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time against the effective time generated by the alteration of input variables and is shown in 
milliseconds. 

The degree of impact that the proper implementation of software and hardware factors 
present is shown in Table 18 and Table 19 for System A and System B respectively. The 
resulting factors of change are calculated as non-dimensional quantifier such that differences 
from the original solution times are applied against the solution times that result when the 
parameter/factors are expressed - the closer to zero the less effect the factor has on system 
performance and the greater the magnitude beyond one the more negative the effect on 
performance. The larger negative impact on performance is manifest as the lowering of the 
number of SMP, the converse is also true and is expected given that the increasing of SMP 
invariably increases the number of graphics cores from which to utilize in a given problem 
domain. 

Interestingly the relative effect of increasing the number of TPB has the same 
consequence regardless of the computing system utilized. The relative equivalence of software 
factors regardless of computing environments is to be expected as the algorithm should operate 
independently if optimized - of course, this is not conclusive as the more dispersed the non-zero 
elements, the greater the irregularity of memory addressing, memory bank conflicts and the 
resultant performance degradation. This is evidenced by Table 18 as. the lowered number of 
SMPs exposes the weakness of locality - higher relative latency due to lower hardware ability to 
hide it. Regularity of the sparse structure can play a significant impact to the potential 
performance benefit in CPU/GPU computing environments. 

However, this is not conclusive as the analytical performance model derived is, as all 
prediction models of this category, based on conservative measures of a given architecture and 
problem domain - extrapolating too far beyond the initial derivation can create computational 
artifacts in the results. 

Table 19 
Categorized software and hardware effects (System A) 

Input 
Hardware 
Factor 

Value 
Factor    of 
Change 

Software 
Factor 

Value 
Factor    of 
Change 

MA SMP 4 2.427 TPB 128 0.414 

MB SMP 4 0.352 TPB 128 0.414 

lOFT SMP 4 2.272 TPB 128 0.414 

MA SMP 64 0.750 TPB 512 0.000 
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MB SMP 64 0.750 TPB 512 0.000 

lOFT SMP 64 0.750 TPB 512 0.000 

Table 20 
Categorized software and hardware effects (System B) 

Input 
Hardware 
Factor 

Value 
Factor    of 
Change 

Software 
Factor 

Value 
Factor    of 
Change 

MA SMP 4 2.50 TPB 128 0.414 

MB SMP 4 2.50 TPB 128 0.414 

lOFT SMP 4 2.50 TPB 128 0.414 

MA SMP 64 0.780 TPB 512 0.000 

MB SMP 64 0.780 TPB 512 0.000 

lOFT SMP 64 0.780 TPB 512 0.000 

Table 21 

Hardware factors and theoretical performance (System A) 

Input Variable Value Time (ms.) ETime (ms.) 

MA SMP 4 204,689.00 537,490.96 

MB SMP 4 1,804,050.00 2,370,321.50 

lOFT SMP 4 140,546.00 444,203.64 

MA SMP 64 204,689.00 39,324.91 

MB SMP 64 1,804,050.00 440,189.68 

lOFT SMP 64 140,546.00 33,945.25 

Table 22 
Software factors and theoretical performance (System A) 

Input Variable Value Time (ms.) ETime (ms.) 

MA TPB 128 204,689.00 222,455.30 

MB TPB 128 1,804,050.00 2,490,088.86 

lOFT TPB 128 140,546.00 192,023.31 

MA TPB 512 204,689.00 204,689.00 

MB TPB 512 1,804,050.00 1,804,050.00 

lOFT TPB 512 140,546.00 140,546.00 
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Table 23 
Hardware factors and theoretical performance (System B) 

Input Variable Value Time (ms.) ETime (ms.) 

MA SMP 4 146,635.00 263,356.17 

MB SMP 4 974,897.00 2,951,083.33 

lOFT SMP 4 89,228.10 263,514.70 

MA SMP 64 146,635.00 16,459.76 

MB SMP 64 974,897.00 184,442.71 

lOFT SMP 64 89,228.10 16,469.67 

Table 24 
Software factors and theoretical performance (System B) 

Input Variable Value Time (ms.) ETime (ms.) 

MA TPB 128 146,635.00 106,411.96 

MB TPB 128 974,897.00 1192417.74 

lOFT TPB 128 89,228.10 106,476.02 

MA TPB 512 146,635.00 146,635.00 

MB TPB 512 974,897.00 974,897.00 

lOFT TPB 512 89,228.10 89,228.10 

The perforaiance results of the single CPU/GPU computing systems have been shown to 
be consistent for presented input unstructured mesh model configurations with varying sizes for 
both System A and System B computing systems. This performance can be dramatically 
affected by sometimes slight aberrations of input - from this single CPU/GPU paradigm the 
multiple CPU/GPU methodology is analyzed and discussed in the next chapter. 
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CHAPTER 5 

Full Candidate Application - Multiple CPU/GPU Computing System 

This chapter focuses on the full solution to the candidate application within the context of 
a multiple CPU/GPU computing system for both System A and System B. The full solution of 
the computationally intensive candidate application is mapped to the CPU/GPU computing 
system, distributed across independent nodes, and the resulting performance is analyzed to 
determine how the hardware and software factors work together to impact the resulting 
application performance. During the mapping, key computationally intensive kernels are 
presented and associated GPU developments explored. 

This chapter will ascertain how the hardware architectures of System A and System B 
work together with the software factors to denote the application performance - key in this 
discussion is the calculation of a computational complexity analysis for multiple CPU/GPU 
computing systems which is a natural extension from the single version presented in the previous 
chapter. The computational complexity analysis is actualized as a performance modeling 
equation that can be used to project how different problem, software, and hardware parameters 
will affect performance. Specific computational behavior of multiple CPU/GPU computing 
systems is the exposure of the important cost of mtra-nodal and local host communication to the 
performance of a computationally intensive application. 

Understanding these variations in factors/parameters is essential as new computing 
architectures arrive to get optimal performance for HPC computational modeling legacy and new 
code development applications. 

5.1 Mapping Full Candidate Application to GPU 

The mapping of the full candidate application to the multiple CPU/GPU environment 
extends from the previous chapter, detailing the mapping of the single CPU/GPU computing 
system, and is developed and demonstrated for both System A and System B environments. The 
previous chapter applied the CNC solver set in the context of a shared memory address 
environment and this chapter grows the environment to include multiple systems each with its 
own CPU/GPU architecture providing intra-node communication via MPI standard [28, 94]. The 
ability of CPU/GPU computing systems to scale with multiple architectures is critical as HPC 
applications have long embraced the increased performance provided by parallelizing large-scale 
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problems with domain decomposition techniques via MPI and much research in the GPGPU 
computing community is targeting this objective [36, 69, 95-97]. The single CPU/GPU 
computing system presented in the previous chapter passed the computationally intensive 

solution to system of linear equations in matrix form Ax = i to a local GPU device where it can 

be most beneficial - extending this paradigm to the multiple systems encompasses an extra level 
of intra-nodal communication, e.g. MPI. 

MPI is a standard for message passing systems with different implementations such as 
MVPICH [26, 28] and historically dominates HPC modeling as an effective methodology for 
application performance boosting [26, 28]. Implementations of the MPI standard define a tool 
for connecting multiple machines and/or discrete CPUs as a logical whole in order to solve 
problems that are computationally prohibitive in a single machine context [26, 28]. This 
methodology is similar to the Parallel Virtual Machine (PVM), the predecessor of MPI [26, 
28], but the differences are important. 

PVM and MPI take different approaches as to the defining and utilization of distributed 
topologies. MPI allows the user to easily create virtual topologies [98] that must be explicitly set 
in PVM [99, 100]. The abstraction of topologies with MPI is one of the reasons for its 
popularity; software developers do not have to focus on different architectural environments 
when creating an application in MPI. The use of virtual topologies has another benefit - many 
MPI implementations optimize the definition of the system based on the physical nodes in the 
current cluster. The MPI implementation simply alters the identifications of the various 
processors contained in the defined communicator to reflect the optimal distances of the actual 
machines contained in the system [98, 100]. PVM will allow for the communication, not only 
between heterogeneous architectures but also between different languages - e.g., a C-Code 
program can interface to a FORTRAN-Code program and vice-versa. PVM will probe for 
differences in architecture to allocate native resources as needed. MPI, whose chief design is 
around both performance and portability, assumes a consistent connection via a defined world 
communicator [98, 100]. PVM is designed for operation within a heterogeneous set of 
architectures, while MPI can do this also, it is not explicitly defined within the standard itself 
[98, 100]. 

MPI was chosen as the standard for intra-node communication for the presented 
candidate composite process flow modeling application as this represents a significant body of 
research in GPGPU computing [101-104] and porting legacy code to utilize CPU/GPU systems 
requires a robust and portable solution that encompasses this paradigm. The key 
computationally intensive Kernels encompassed by the multiple CPU/GPU computing systems 
are discussed next. 
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5.1.1 Key Computationally Intensive Kernels. The key computationally intensive 
Kernels for the multiple CPU/GPU computing systems introduced in this chapter are evolved 
from two distinct sources. The first source is a direct result of the utilization of sets of single 
CPU/GPU computing systems from which the multiple CPU/GPU computing system is formed 
as each individual CPU/GPU machine involved brings with it the local computationally intensive 
Kernels that are effected by a separate machine architecture. The second source is directly 
related to the communication vehicle for the multiple CPU/GPU computing systems, MPI and 
any communicational overhead it brings to the total system is magnified by the significant GPU 
and CPU communications via the local PCIe bus - a noted bottleneck in single CPU/GPU 
systems now magnified by the number of distinct nodes in the communication world of MPI [69, 
97]. 

5.1.2 GPU Code Developments. This sub-section establishes GPU code developments 
such as API tools/libraries and the data-structures/layouts for the definition of the multiple 
CPU/GPU computing system. Nvidia's CUDA API has remained ahead in the GPGPU 
computing community [1,2, 24] and this continues as interest grows in CPU/GPU computing 
clusters with the provision of the Unified Virtual Address (UVA) space [37, 62, 105]. 

UVA allows CUDA to map GPU device buffers into a global virtual address space and 
then queries the system to determine if a desired address is in GPU or CPU space. UVA then 
signals CUDA to execute a PCIe communication or local memory call, depending on the 
physical location of the virtual address - theoretically allowing for direct MPI buffer transfers. 
However, CUDA UVA was not utilized with the presented candidate application as the construct 
did not come to fruition until compute architecture 2.0 and this leaves out System A [58]. So in 
the interest of consistency was not pursued in this dissertation. 

Given that the individual GPU devices in the multiple CPU/GPU computing systems 
have no direct communication to outside nodes a double-copying is inferred [105]. The 
individual CPU/GPU computing system executed upon a local sub-domain of the global problem 
space, as per domain decomposition [26, 28], passing the computationally intensive system of 
linear equations defined as a sparse matrix system to the local GPU. The GPU executes the 
system using the PCG iterative solver, as with the single CPU/GPU system, and returns the result 
back across the PCIe bus to the CPU where it is then stored in the defined MPI communication 
buffers to be shared with other nodes in the system - unavoidably increasing the latency as there 
must now be explicit staging of memory buffers for collective and point-to-point calls [94] and 
GPU to CPU to MPI and back the same path at each iteration of the algorithm. 

The full candidate application is validated against an analytically derived solution for a 
simple 2D radial injection circular plate mold geometry model using the multiple CPU/GPU 
computing system next. 
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5.2 Validation of Full Candidate Application on Multiple CPU/GPU 

The correctness of the full candidate application for the multiple CPU/GPU computing 
systems is ensured via the examination of flow-front progression and injection port pressures of 
numerical solutions for CPU and GPU against the correspondingly analytical results. As before, 
the model used for validation is a simple 2D circular plate with the resulting analytical equation. 

The simple model being used in this chapter is a radial flow in a circular plate with a 

radius of 10 cm and an iimer radius of 0.15 cm shown in Figure 56. The inner radius, i?Q, is 

subjected to a constant flow rate2.   The thickness of the cavity is//, the pressure is P, resin 

viscosity is /J. , the permeability of the fiber preform is K, and the porosity of fiber compaction 

is^. The flow front radius at any time / is given by [89]: 

Rit) Qt 
Tt(j>H 

Rl (5.1) 

The corresponding expression for injection pressure, which varies with time, is given by [89]: 
f       ^       f ^(.\\\ 

^i„ 
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Figure 51. 2D circular plate validation model (not to scale). 

The following physical parameters are used in this analysis: 

cm 
Q = 2A , permeability/r = 44.0e-08cm-, a viscosity/^ = 0.02^05", a porosity of(^ = 0.805, 

sec 
a time step A? = 0.5 sec, and an element thickness//= 0.742cm .    The circular plate model 
involved a computational mesh of 1,344 nodes and 2,560 3-noded triangular elements. Figure 52 
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and Figure 54 display the flow-front progression for System A and System B respectively and 
clearly define accuracy with the analytical value. Figure 53 and Figure 55 display the inlet 
injection pressure for System A and System B respectively and clearly define accuracy with the 
analytical value. 

The flow-front and inlet injection pressure values are accurate so the full candidate 
solution for the multiple CPU/GPU computing systems is presented next with a focus on initial 
performance evaluation using the multiple CPU/GPU computing systems. 
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Figure 52. Validation of multiple CPU/GPU for flow-front progression (System A). 
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Figure 53. Validation of multiple CPU/GPU for inlet injection pressure (System A). 
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Figure 54. Validation of multiple CPU/GPU for flow-front progression (System B). 
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Figure 55. Validation of multiple CPU/GPU for inlet injection pressure (System B). 

5.3 Initial Full Candidate Application Performance on Multiple CPU/GPU 

Much of the establishment of key computationally intensive Kernels for the multiple 
CPU/GPU computing systems is a reflection of the single CPU/GPU computing system from the 
previous chapter. The single system provides the building blocks of the multiple systems leaving 
the effective performance of the multiple systems to the parlance of latency mitigation as a 
product of standard MPI communication overhead [26, 28] and noted CPU/GPU costs [106-109]. 

5.3.1 System A. The full candidate solution for multiple CPU/GPU computing systems 
was applied using System A and is discussed in this sub-section. The initial problem domain was 
partitioned into various sub-domains each to be executed on a single CPU/GPU computing 
system. The multiple sub-domain results are then compared against the CPU-only, and the 
CPU/MPI solution times. 

Table 24 shows the total solution times, in milliseconds, for increasing numbers of 
partitions using as input unstructured mesh MA expressed using CSR data format compression 
with System A computing architecture. The observed total solution times in all cases are higher 
for the multiple CPU/GPU computing system over the single CPU-only and CPU plus MPI 
which illustrates the significant cost potential of the extra layer of latency produced by uitra-node 
communication within the execution of the global solution domain. The slight decrease at 2- 
partitions for the GPU plus MPI model is due to the cache effect of increased local memory to 
allow more of the problem to be immediately available for solving. 
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Table 25 shows the total solution times, in milliseconds, for increasing numbers of 
partitions using as input unstructured mesh configuration MB expressed using CSR data format 
compression with System A computing architecture. The observed total solution times for GPU 
plus MPI are more promising as the increased computational loads on the individual nodes using 
the larger sized input mesh are large enough to overcome the latency of intra-node as well as the 
PCIe bottleneck - until 16 sub-domains are created and computational loads on individual nodes 
in the system become too poor to overcome increasing latency for this fixed problem size. Figure 
56 and Figure 57 visually depict the observed performance using System A as the computing 
envirormient and different sized mesh configurations MA and MB respectively. 

The more structured meshes MA and MB depict distinct performance differences when 
employing MPI with the local GPU. The smaller model MA illustrates no performance benefit 
for MPI with GPU over MPI without GPU as the smaller model does not have enough 
computational intensity at the local GPU level to overcome the cost of intra-nodal 
communication generated by MPI [70, 105]. The larger model MB reveals a slight performance 
boost when using MPI and the local GPU for the global count of partitions that remain below 16 
when the intra-nodal communication cost once again become the dominating factor of 

performance. The more unstructured mesh model lOFT shows a negligible difference of MPI 
with or without utilizing the local GPU due to the more evenly distributed non-zero elements, 
each computing node in the system is given nearly equal divisions of work and the so throughput 
latency is better handled, thus hiding the intra-nodal communication cost of MPI better. 

Table 26 shows the total solution times, in milliseconds, for increasing numbers of 
partitions using as input unstructured mesh configuration lOFT defined earlier expressed using 
CSR data format compression with System A computing architecture. The observed total 
solution times for GPU plus MPI are higher than the corresponding CPU plus MPI - the 
performance is closer than the results shown by the mesh MA as the numbers of non-zero 
elements is greater for lOFT but the intra-nodal communication derived from the coarser-grained 
parallelism of MPI communication creates higher levels of latency that must be mitigated [69, 
105, 109]. 

The next sub-section will discuss the results of the multiple CPU/GPU architecture 
defined by System B. 
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Table 25 

Multiple CPU/GPU performance in milliseconds with mesh MA (System A) 
Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.) 
CSR 1 2,749,450.00 418,440.00 
CSR 2 1,666,960.00 1,604,200.00 
CSR 4 825,989.00 1,357,890.00 
CSR 16 260,669.00   1,461,590.00 

Table 26 
Multiple CPU/GPU performance in milliseconds with mesh MB (System A) 

Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.) 
CSR 1 77,163,900.00 4,219,610.00 
CSR 2 20,169,400.00 16,985,600.00 
CSR 4 9,633,960.00 8,570,300.00 
CSR 16 2,495,580.00 23,956,100.00 

Table 27 
Multiple CPU/GPU performance in milliseconds with mesh lOFT (System A) 
Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.) 
CSR 1 6,649,810.00 140,546.00 
CSR 2 1,206,160.00 1,246,120.00 
CSR 4 621,867.00 688,750.00 
CSR 8 321,710.00 545,930.00 
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Figure 56. Multiple CPU/GPU computing system - mesh MA (System A). 
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Figure 58. Multiple CPU/GPU computing system - mesh lOFT (System A). 

5.3.2 System B. The full candidate solution for multiple CPU/GPU computing systems is 
executed in the System B computing environment and is discussed in this sub-section. The initial 
global problem domain is partitioned into various sub-domains and passed among various 
discrete processing nodes to be executed in the maimer of a single CPU/GPU computing system. 
The multiple sub-domain results are then compared against the CPU-only, and the CPU/MPI 
solution times. 

Table 27 shows the total solution times, in milliseconds, for increasing numbers of 
partitions using as input unstructured mesh configuration MA expressed using CSR data format 
compression with System B computing architecture. The observed total solution times in all 
cases involving sub-domain partitions reveal that the GPU plus MPI construct outperforms the 
CPU/MPI model. However this positive benefit of combining GPU and MPI is not observed in 
the larger input mesh configuration MB as can be seen in Table 28. This observed performance 
degradation for the larger element mesh is a stark contrast from the behavior manifested in 
System A, where a larger mesh resulted in better performance as the computationally intensive 
operations increased. 

Table 29 shows the total solution times, in milliseconds, for increasing numbers of 
partitions using as input unstructured mesh configuration lOFT expressed using CSR data format 
compression with System B computing architecture. The observed solution times for the lOFT 
model, while executing on the more advanced CPU/GPU computing System B never manages to 
overcome the latency incurred by the intra-nodal communication emergent from the use of 
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multiple MPI communication calls - evidence of a faster and more efficient hardware that 
minimizes costs at the local host and conversely exposing the MPI communication costs. 

Figure 59 and Figure 60 are visual depictions of the observed results of the multiple 
CPU/GPU architecture System B listed in Table 27 and Table 28, and Figure 61 illustrates the 
data given in Table 29. The next sub-section will examine, analyze and discuss the observed 
initial performance results for multiple CPU/GPU systems represented by computing System B 
and System A. 

Table 28 
Multiple CPU/GPU performance in milliseconds with mesh MA (System B) 
Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.) 
CSR 1 420,980.00 168,570.00 
CSR 2 767,364.00 220,462.00 
CSR 4 448,665.00 98,034.20 
CSR 16 307,081.00 44,392.40 

Table 29 
Multiple CPU/GPU performance in milliseconds with mesh MB (System B) 
Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.) 
CSR 1 6,306,240.00 1,197,350.00 
CSR 2 1,675,850.00 2,995,870.00 
CSR 4 872,019.00 2,172,520.00 
CSR 16 318,895.00 1,490,310.00 

Table 30 
Multiple CPU/GPU performance in milliseconds with mesh lOFT (System B) 
Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.) 
CSR 1 616,770.00 89,228.10 
CSR 2 124,995.00 249,532.00 
CSR 4 73,081.40 145,577.00 

CSR 8 41,426.60 118,746.00 
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Figure 61. Multiple CPU/GPU computing system - mesh lOFT (System B). 

5.3.3 Initial performance analysis. The execution of the unstructured mesh input files, 
MA, MB and lOFT for both computing systems exposes some interesting performance 
behaviors, notably a divergence of performance for the different computing environments. The 
observed results for both System A and System B lower in total solution time as the number of 
sub-domains increases - excepting at 16 partitions, as System A then starts to ratchet up in 
solution times for both input meshes MA and MB. The input mesh lOFT displays almost no 
difference between CPU plus MPI and GPU plus MPI - the impact of intra-nodal 
communication is lessened for this model within the System A computing system environment. 

System B performs better using GPU plus MPI over CPU/MPI for the smaller input mesh 
MA but this is the opposite of that observed with the larger mesh MB. System B has both a 
larger set of registers and shared memory than System A and therefore able to hold larger 
amounts of data to increase throughput allowing better utilization and conversely exposing 
higher combined latencies of local CPU-GPU and intra-nodal communications. The result is the 
counter-intuitive effect of a less computationally intensive problem performing better than the 
larger and more computationally costly input mesh MB - an artifact of increased memory 
complexity and no direct connection to the MPI library calls. 

The counter-intuitive effect of better hardware creating reverse performance for larger 
problem domains, i.e. less computationally intensive models can perform better than more 
computationally intensive models using a device that is optimal for systems requiring higher 
numbers of floating point operations can be seen in Figure 61. Figure 61 shows a nearly constant 
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difference from the GPU plus MPI and CPU plus MPI which is likely due to the more efficient 
execution of the GPU device - exposing a larger amount of intra-nodal communication cost for 
the global system. 

The software factors that influence the performance of multiple CPU/GPU computing 
systems is discussed next followed by the corresponding hardware factors. 

5.4 Software Data-Structures/Layout Factors 

The previous section was an initial performance analysis for unstructured mesh inputs via 
the multiple CPU/GPU computing systems defined as System A and System B and produced 
mixed results - System A displayed a performance boost for the larger input mesh MB but not 
MA and System B displayed the converse. However neither approached the same level of 
performance observed by the single CPU/GPU systems of the previous chapter and neither 
illustrated definitive performance increase for input mesh lOFT - although System A yields a 
closer result. The software variables involved in the observed results of the initial fiill solution 
with multiple CPU/GPU computing systems are examined to identify potential factors that can 
hinder performance of the presented candidate application. The first software factor to be 
examined is intrinsic to memory-bound problems such as the presented candidate composite 
process flow modeling finite element based application - data compression format. 

In the interest of brevity, the reader is referred to chapter 4 for a more detailed reasoning 
for the execution of the BCSR2x2 format over GSR which was defined for the initial 
performance results observed. The same system parameters that exist at the local single 
CPU/GPU computing systems are valid for the multiple CPU/GPU structure presented in this 
chapter, and the potential increase in locality via the utilization of the BCSR2x2 data 
compression format [52-54] is discussed next. 

Figure 62 and Figure 63 show the multiple CPU/GPU performance with System A and 
System B respectively using only BCSR2x2 data compression format for input meshes MA and 
MB. The homogeneous comparisons of the BCSR2x2 show that System A gains no positive 
performance benefit using the smaller input mesh MA but does for the corresponding larger 
mesh MB once 16 partitions is reached whereas the GSR format showed that at 16 partitions the 
performance for this input mesh dropped. This difference in behavior corroborates the precept 
that locality defined at the software data layout can effect behavior of HPC applications. 

Figure 66 and Figure 67 show the performance of the input mesh lOFT for System A and 
System B respectively comparing the GSR and BCSR2x2 compression formats. The less regular 
mesh defined by the lOFT model displays a consistent benefit when expressed using the 
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BCSR2x2 compression format over the CSR format. These observed performance results are 
consistent with the input mesh MA, which contains a similar number of non-zeros but in a much 
less complex geometry. 

System B displays similar performance behavior as System A when the data 
compression layout is altered to BCSR2x2 but to a larger magnitude. System A showed 
performance benefit at 16 partitions for the input unstructured mesh MB whereas System B 
illustrates this same benefit at 4 partitions. And while System A has no discernible advantage of 
BCSR2x2 for the input mesh MA, System B does show a lower total solution cost, albeit not 
very impressive. Table 30 and Table 32 are the observed results utilizing the BCSR2x2 
compression format for System A and System B respectively. 

The observed results are taken within the context of the BCSR2x2 data compression 
formats only, with the base line defined as the cost of execution for the global solution using 
BCSR2x2 - i.e. the full solution cost using the BCSR2x2 compression format using a CPU/GPU 
computing system at a single processor level, with no domain decomposition applied. The 
effects of spatial locality are applied in a mixed compression environment next. 
Table 31 
Multiple CPU/GPU performance in seconds (System A) 

Data Compression Partitions Mesh MA Mesh MB 
BCSR2x2 1 418.44 4,219.61 
BCSR2x2 2 1,512.94 14,223.50 
BCSR2x2 4 1,015.11 7,429.34 
BCSR2x2 16 715.41 3,234.68 

Table 32 
Multiple CPU/GPU performance of lOFT model in seconds (System A) 

Data Compression Partitions Mesh lOFT 
BCSR2x2 1 140.69 

BCSR2x2 2 1,020.35 

BCSR2x2 4 660.38 

BCSR2x2 8 551.57 

Table 33 
Multiple CPU/GPU performance in seconds (System B) 

Data Compression Partitions Mesh MA Mesh MB 
BCSR2x2 1 217.76 1,931.31 

BCSR2x2 2 233.34 2,151.81 

BCSR2x2 4 168.96 1,202.46 
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BCSR2x2 16 129.29 549.83 

Table 34 
Multiple CPU/GPU performance of 1 OFT model in seconds (System B) 
Data Compression Partitions Mesh lOFT 
BCSR2x2 1 89.07 

BCSR2x2 2 169.63 
BCSR2x2 4 133.66 
BCSR2x2 8 132.52 

Figure 64 and Figure 65 show the comparison of the multiple CPU/GPU computing 
systems using different data formats of CSR and BCSR2x2 with System A and System B 
respectively. System A shows a positive benefit of using the BCSR2x2 format over the CSR 
format but only for a limited number of sub-domains for the input unstructured mesh MB and 
even less for the smaller input mesh MA. This observation illustrates that increasing spatial 
locality for the System A architecture can have absolute benefit as BCSR2x2 will improve on 
the CSR format and not just illustrate an ever increasing computational benefit as compared to a 
single compression format in all cases. System B does not follow the same pattern as System A. 

The multiple CPU/GPU computing system defined by System B does not show any 
positive benefit for the use of the BCSR2x2 data compression format when direct comparisons to 
CSR are made - excepting a slight improvement for 2-partitions using the MA input likely due 
to cache effects. These observations are further elaborated in the next section on hardware 
factors as the immunity to the increased locality of System B when using BCSR2x2 is a 
consequence of this. Table 34 and Table 35 show the observed results for the comparison of CSR 
and BCSR2x2 data compression formats for System A and System B respectively. The less 
regular input mesh lOFT shows a more consistent behavior for both computing environments. 

Table 35 
Midtiple CPU/GPU performance in seconds -formats (System A) 

Partitions 
Mesh         MA 
(CSR) 

Mesh MA (BCSR2x2) Mesh MB (CSR) 
Mesh         MB 
(BCSR2x2) 

1 418.44 418.44 4,219.61 4,219.61 
2 2,009.79 1,512.94 15,815.20 14,223.50 
4 1,011.24 1,015.11 7,651.25 7,429.34 
16 702.69 715.41 3,261.84 3,234.68 
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Table 36 
Multiple CPU/GPU performance in seconds -formats (System B) 

Partitions 
Mesh          MA 
(CSR) 

Mesh MA (BCSR2x2) Mesh MB (CSR) 
Mesh        MB 
(BCSR2x2) 

1 168.57 217.76 1,197.35 1,931.31 
2 335.92 233.34 2,138.79 2,151.81 
4 157.90 168.96 1,038.69 1,202.46 
16 124.02 129.29 495.33 549.83 
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Figure 65. Multiple CPU/GPU performance mixed compression (System B). 

Figure 66 and Figure 67 show the performance results for System A and System B 
respectively for the input mesh configuration lOFT. The computing environments defined by 
System A and System B illustrate general equivalence of performance benefit for increased 
locality exposed by the use of BCSR2x2 - unlike the input meshes MA and MB. The more 
regular input meshes MA and MB have lower irregular memory access patterns than lOFT, 
exposing hardware differences to a greater degree - improving locality for the algorithm has 
consistent results in both computing environments. 
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Figure 66. Multiple CPU/GPU performance mixed compression - lOFT (System A). 
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5.5 Hardware Architectural Factors 

Tfce observed performance of the CPU/GPU computing systems using the unstructured 
mesh input defined by MA, MB, and lOFT is affected not just by the software factors discussed 
in the previous section but hardware factors as well. The presented candidate application 
performed with mixed results using the multiple CPU/GPU computing system paradigm, and 
switching to different data compression formats continued these amalgamated observations - 
providing enhanced results for System A but less so for System B. The lower sensitivity to the 
adjustment of data compression format of System B given the equivalence of partition counts 
and input meshes implies an underlying hardware factor. 

The architectural design of System B is defined as CUDA compute architecture 2.0 and 
System A is defined as CUDA compute architecture 1.0 - significant architectural differences 
for these systems exist. CUDA's thread concept is register-bound and with System B 
embodying over 32,000 on-chip registers compared to System A with a little over 8,000 
provides the ability of more resources for execution threads to remain viable - more importantly 
is the existence of an actual cache structure for System B that is absent from System A. 

The inclusion of the System B cache and higher memory device I/O allow for higher 
throughput and a finer granularity than that provided by System A. This finer granularity and 
faster memory I/O for System B creates less sensitivity to the locality alterations provided via 
the BCSR2x2 data compression format, as the multiple CPU/GPU computing system has less 
problems with data locality than does System A. Therefore optimizing the performance of the 
presented candidate application has different requirements for the different architectures that 
need to be understood. 

Figure 64 and Figure 65 exemplify the importance of a proper coordination of software 
and hardware factors for optimizing HPC applications. Figure 64 shows that System A is 
positively impacted with the application of BCSR2x2 due to a lack of hardware-level cache 
whereas utilizing BCSR2x2 to increase locality for System B is both unnecessary and potentially 
deleterious to performance as shown in Figure 65 using input meshes MA and MB. Increasing 
the number of elements in a single clock cycle with the implementation of BCSR2x2 using the 
multiple CPU/GPU computing system defined by System B is likely over-utilizing the on-chip 
hardware resources as competition increases. 

The next section discusses the observed full solution performance using an augmented 
version of equation (4.9.3) fi-om chapter 4 such that the performance of multiple CPU/GPU 
computing systems is endorsed. 

229 



5.6 Computational Complexity Analysis 

This section establishes the mapping of the observed performance and the derived 
complexity analysis for the multiple CPU/GPU computing system, detailed in Appendix A. The 
theoretical performance estimates for System A are discussed first followed by those for System 
B where all results are generated under the assumption of CSR data compression format. 

The complexity analysis model for the multiple CPU/GPU systems is a natural extension 
from the previous chapter's derivation of the single CPU/GPU systems model - the results from 
the single analysis model are incorporated as a critical component of the multiple analysis model. 
However, the introduction of MPI as a communication amongst various sub-domains presents an 
added level of communication abstraction given that the GPU cannot communicate directly with 
the CPU it can neither communicate with the MPI library calls that can contain a significant 
amount of overhead [105]. Building from equation (4.9.3) in chapter 4 and using value found 

for T^p^, equation (5.3) with P^^ the number of sub-domains, N^j.^ the number of active threads 

per block, and C the cost of combined combination of intra-node communication - assuming that 

P^^ is no greater than 16. 

T 
T =     gP" 

mull   spu T-j 

"sd 

(5.3) 

The determination of the performance modeling equation for multiple CPU/GPU systems 
is more involved than the single CPU/GPU system model - the individual architectures involved 
can present obfuscated operational costs which accentuate the PCIe bottleneck of the single 
system. Equation (5.3) depicts a change in computational cost when the number of sub-domains 
reaches 16 as CUDA waits until a half-warp is instantiated before issuing a memory transaction 
[37, 93] - this condition is meant to emulate this behavior across discrete systems. 

The communication variable C from equation (5.3) is affected not only by the size of the 
problem domain but also individual architectures and MPI implementations involved and it is the 
inter-play of MPI and local CPU-GPU host communications that is generally deleterious to 
multiple CPU/GPU computing systems [105, 106, 110]. The understanding of how these 
communication factors interact with the determined modeling equation is discussed in the next 
sub-section. 

5.6.1 Relationship of MPI-GPU and CPU-GPU communication. The Multiple 
CPU/GPU computing systems do not yield optimal parallel performance as expected when given 
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P processors and a sparse matrix with N, total non-zero elements and R local GPU registers 

i.e. does not result in — benefit [28]. The reason is that as the initial system of N_ elements is 

broken down into smaller sets that are held at the local GPU device yields more latency to hide 
and correspondingly less computational intensity to utilize GPU resources. This behavior was 
observed to be consistent across System A and System B for both input meshes when adjusted 

for local GPU register counts and associated A'^. elements. 

The expected behavior of a given computationally intensive application can be seen as 

related to the percentage of total A^_ elements held locally at the GPU device and the number of 

partitions distributed across the global system. The percentage of total A^. elements held locally 

is given by equation (5.4) and was used as the independent variable to map the observed multiple 

CPU/GPU system performance against the optimal parallel behavior—. 

R^ 
N. 

(5.4) 

The ratio of the optimal parallel performance and actual performance for a given value of 

R defines the performance deviation from ideal due to the local CPU-GPU host and MPI 

communication inter-play. These deviations were mapped using regression such that NZ,^^^i is 

the ratio of the total number of non-zero elements, A'^,, from the global problem domain held by 

the local GPU device and X^ is the value of the deviation computed as the ratio of ideal 

T 
parallelism —^ and the actual execution time for the given number of partitions Pand execution 

time for the serial versionT^ represented as the solid BLACK lines in Figure 68, Figure 69, 

Figure 70 and Figure 71. These are shown for System A as Figure 68 and Figure 69 for input 
meshes MA and MB respectively - Figure 70 and Figure 71 illustrate these same factors for 
input meshes MA and MB using System B. 

The equations revealed by regression, shown for convenience in Figure 68, Figure 69, 
Figure 70, and Figure 71 as the dashed RED lines, vary with (5.4) as input but can be easily 

replaced by the number of processors P as the proportion of A'^. elements held by a local GPU 

device is directly related - this same precept holds for input mesh lOFT. The equations derived 
via regression have a Pearson Product-Moment correlation coefficient of 1 in all cases, the 
coefficient dependency is one-to-one [111] - i.e., exact match with the deviation from ideal 

represented as X^ in the figures. The approximated equations derived with regression from X 
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are degree 3 for all models and essentially isolate the overhead of CPU-GPU local host and intra- 
nodal communication costs. These approximated polynomial equations are employed as an 
asymptotic measurement. Therefore, by the definition of asymptotic behavior [91], the 
relationship of MPI and local CPU-GPU communication effects on multiple CPU/GPU 
computing systems can be shown as (5.5). 

O(R') (5.5) 

The equations derived via regression are specific to the observed performance for a given 
input mesh and architecture, but extending the number of partitions i.e. increasing independent 
variable against equation (5.5) and applying some constant K define the cost of intra-nodal and 
local CPU-GPU host communication will not be greater than cubic. 

The asymptotic equation (5.5) is compared to the equations that were derived using 
regression for both System A and System B. Figure 72 and Figure 73 show the asymptotic 
behavior of the input meshes MA and MB for System A respectively and Figure 74 Figure 75 
show input meshes MA and MB for System B. The results are shown in Figure 76 and Figure 77 
for input mesh lOFT using computing System A and System B respectively. These figures show 
that regardless of the number of partitions/sub-domains the theoretical cost of local CPU-GPU 
and intra-nodal communication, represented as the solid line, indeed stay below cubic, 
represented as the dashed line, for all models and both computing system environments. 
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System A: Mesh MB 
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System B: Mesh MB 
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Figure 71. Non-zeros held locally (mesh MB) and factors with multiple CPU/GPU. 
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SvstemA: Mesh MB 
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Figure 73. Asymptotic behavior of MPI and CPU-GPU communication (MB, System A). 
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Svstem B: Mesh MB 
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Figure 75. Asymptotic behavior of MPI and CPU-GPU communication (MB, System B). 
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System B: Mesh lOFT 
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Figure 77. Asymptotic behavior of MPI and CPU-GPU communication (lOFT, System B). 

The next sub-section examines the theoretical performance resuhs using the model given 
by equation (5.3) and altering hardware factors. 

5.6.2 Comparison of performance modeling. The Multiple CPU/GPU computing 
system performance predictive model is compared to the actual time for each sub-domains for 
both System A and System B for input meshes MA and MB with the same input parameters. 
Figure 78, Figure 79 and Figure 80 show a strong correlation to the modeled performance given 
by equation (5.3) and the actual fiill solution execution time for the multiple CPU/GPU system 
defined by System A. Figure 81, Figure 82 and Figure 83 show a strong correlation to the 
modeled performance equation (5.3) and the actual fiill solution execution time for the multiple 
CPU/GPU system by System B. 
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System A: Performance Modeling 
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Figure 78. Multiple CPU/GPU theoretical performance with input MA (System A). 

System A: Performance Modeling 
18,0 

16,0 

14,0 

Cn.o 

^ 10.0 
u 
e s.o 

P 6.0 

4.0 

2.0 

0.0 

^**'X^ — ~ Estimated Time 
^"^^^ 

^^-^fc..               "■** 

^^*****n^_    "^    •»», 

~ 

16 
Number of Partitions 

(MesliRIB) 
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System A: Performance Analvsis 
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Figure 80. Multiple CPU/GPU theoretical performance with input lOFT (System A). 
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Svstem B: Performance Modeling 
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Figure 82. Multiple CPU/GPU theoretical performance with input MB (System B). 
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Figure 83. Multiple CPU/GPU theoretical performance with input lOFT (System B). 

5.6.3 Contribution of Hardware Factors. This section establishes a relationship to 
hardware factors and the resulting application performance via the derived equation (5.3), 

240 



adjusting hardware variables and then projecting against the actual performance of the 
application. The resulting differentials are analyzed and the impact of the adjusted parameter(s) 
on performance of the CPU/GPU computing system is theorized. The number of SMPs for each 
of the defined computing systems is adjusted while the rest of the model is held as constant to 
isolate the specific hardware. 

Figure 84 and Figure 85 show that as the number of SMPs drops the corresponding 
theoretical performance decreases for System A for both input mesh MA and MB respectively - 
due to the lower computational power of the individual processing elements. Increasing the 
number of SMPs for System A has the opposite effect on theoretical performance for both input 
mesh MA and MB, directly related to the greater computational power that is leveraged at this 
alteration. These theoretical performance results are consistent for Figure 84 and Figure 85 with 
the decrease of SMPs, shown as the dashed RED lines, producing greater effect when compared 
to the corresponding increase of SMPs shown as the dotted BLUE lines. 

Figure 86 shows the less structured input mesh lOFT and depicts a theoretical behavior 
across increasing partitions/sub-domains as roughly reflective of that for the more structured 
input meshes MA and MB for System A shown in Figure 84 and Figure 85. Increasing the 
number of SMPs will lower the total execution time and decreasing the number of SMPs will 
raise the total execution time. However, the degree of change is significantly higher for the lOFT 
mesh using System A - likely due to the more distributed nature of the mesh, generating a 
correspondingly less regular sparse matrix and coercing more indirection in the data compression 
format. The increased indirection of the sparse matrix-vector multiplication for the lOFT model 
combined with lower SMPs means lower process throughput hindered by higher levels of 
irregular memory access patterns, significantly deteriorating latency hiding. 

Figure 87 and Figure 88 show that System B has a similar theoretical behavior to that 
produced by System A; however the theoretical performance is much less pronounced. 
Theoretical performance drops for both increasing and decreasing the number of SMPs at 4 
partitions as the computational intensity becomes less salient and the communication costs for 
intra-nodal communication overtake the final results. 

The next sub-section discusses the software factors on theoretical performance for 
multiple CPU/GPU computing systems. 
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System A: Adjust Hardware Factor (SMPs) 
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System A: Influence of SMP 
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Figure 86. Multiple CPU/GPU performance with lOFT - hardware factor (System A). 
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System B: Adjust Hardware Factor (SMPs) 
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Figure 88. Multiple CPU/GPU performance with MB - hardware factor (System B). 
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Figure 89. Multiple CPU/GPU performance with lOFT - hardware factor (System B). 

5.6.4 Contribution of Software Factors. This section establishes a relationship to 
software factors and the resulting application performance via the derived equation (5.3), 
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adjusting hardware variables and then projecting against the actual performance of the 
application. The resulting differentials are analyzed and the impact of the adjusted parameter(s) 
on performance of the CPU/GPU computing system is theorized. 

Thread occupancy is a common practice for increasing the performance of GPU-based 
systems in the GPGPU computing cormnunity and this paradigm is followed to achieve 
theoretical performance boost, altering the number of Threads-Per-Block (TPB). Increasing the 
TPB value in equation (4.9.3) is carried through to equation (5.3) and allows higher probability 
of coalesced memory accesses and utilizes more floating-point operational units - e.g. improved 
theoretical performance. Once again, System A displays the clearest benefits for both input 
meshes as shown in Figure 90 and Figure 91 - Figure 92 clearly illustrates the best performance 
at 256 threads per block. 

Lower the number of TPB to less than optimal for System A, defined as 256, provides 
less opportunity for address coalescing as well as lower throughput whereas increasing the TPB 
has the converse theoretical effect. Figure 93, Figure 94 and Figure 95 for System B display 
similar effects on theoretical performance observed on System A excepting the sudden "dip" 
encountered at 4 partitions for both input meshes. 

The observed theoretical "dip" at 4 partitions for System B is an artifact of equation (4.7) 

with the cost of the denominator v 5 . System B with input mesh MB shows a lowering of the 
effects of both higher and lower TPB as the number of partitions increase due to the growing 
influence of intra-nodal communication latency as well as increasing calls to the local CPU via 
the PCIe bus for each node in the global system. 
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SvstemA: Influence of TPB 
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Figure 90. Multiple CPU/GPU performance with MA - software factor (System A). 
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Figure 91. Multiple CPU/GPU performance with MB - software factor (System A). 
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System A: Influence of TPB 
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Figure 92. Multiple CPU/GPU performance with lOFT - software factor (System A). 
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Figure 93. Multiple CPU/GPU performance with MA - software factor (System B). 
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Svstem B: Influence of TPB 
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Figure 94. Multiple CPU/GPU performance with MB - software factor (System B). 
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Figure 95. Multiple CPU/GPU performance with lOFT - software factor (System B). 

The next section relates the observations of hardware and software factors to the final 

performance results of the presented candidate application, reasoning the importance of careful 
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use   for  multiple  CPU/GPU  computing   systems   for  optimal  HPC   modeling  application 
performance. 

5.7 Performance and Relation to Software and Hardware Factors 

The resulting performance of the multiple CPU/GPU computing system is directly tied to 
the interplay of software and hardware factors of the environments in which they executed and 
are related in this section - simply expanding hardware chips will not necessarily produce the 
desired performance boost if the algorithm poorly incorporates the hardware and vice versa. 
Point in fact, just loading a system with the largest possible number of threads (a software factor) 
will overload the register file (a hardware factor) with resource demands enforcing less 
utilization as well as register spilling to device memory and increasing the number of clock 
cycles to hundreds. Increasing the number of computational chips via the increasing number of 
SMPs (a hardware factor) will mean little if the access pattern of a matrix system defined by the 
application (an algorithmic factor) is accessed by Kernel threads in a row-major order when the 
GPU device is optimized for column-major causing non-contiguous addressing. 

The single CPU/GPU systems from the previous chapter illustrate the overlap of software 
and hardware artifacts on resulting performance and the multiple CPU/GPU systems in this 
chapter show the same influence. However, this is not as easy to spot as the aggregate costs 
imposed by intra-node communication can abrogate any performance benefits observed. And 
determining the cost of this intra-node communication is difficult given its combination of the 
local PCIe overhead of CPU/GPU communications. 

The current state of the GPU is one of isolation fi-om the CPU as well as the MPI 
standards - this is an area of current research and concern for future co-processor accelerators 
[36, 96, 97, 112, 113]. Equation (5.3) takes liberties and employs approximation with regard to 
the final cost of this communication between nodes and the local CPU-GPU costs as there is an 
inherent double-copy when using MPI library calls for a set of one or more CPU/GPU systems 
[105]. 

Establishing a direct and dynamic relation among all the defined software, hardware, and 
algorithmic factors is necessary to elicit optimal performance boost for the presented candidate 
application. This same judicious application of software and algorithmic methodologies are 
needed for many other HPC computational modeling applications as the iterative solution to the 
sparse matrix system defined by the presented candidate application is common to many 

scientific and engineering applications [20, 21, 23, 39, 55, 80] that wish to fiiUy utilize the 
substantial performance boosting capabilities of not only GPU accelerators but the inexorable 
domination of multi-core CPUs [3, 4, 114]. 
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CHAPTER 6 
Summary and Future Directions 

The major conclusions of this dissertation can be summarized as follows: 

(i) The relationship of software and hardware factors on the performance of 
computationally intense applications that wish to execute within the context of the 
modem CPU/GPU computing systems must be judiciously applied for optimal 
performance. 

(ii) A predictive performance model was adapted for this research and is within the range 
of acceptable normalized error for functionality. This model can be used to assist 
with the proper determination of costljenefit optimal manipulation of software and 
hardware factors. 

(iii) Intra-nodal communication and local CPU/GPU host communication can be 
deleterious to performance benefits for multiple CPU/GPU computing environments 
and the asjmiptotic upper bound on this communicational cost was calculated as 
asymptotically bound to cubic values with data locality. 

(iv) The more regular an input matrix being solved by a CPU/GPU computing system, 
single or multiple node, the more exposed software factors are to fmal performance 
whereas the less regular a resulting matrix system, the greater the impact of 
hardware. 

Computing systems are fast approaching a time when the non-deterministic paradigm of 
parallelism inherent in multi-cored architectures like the GPU will become common-place. High 
Performance Computing applications wishing to harness this computational power optimally will 
have to be adjusted as per three categories of factors - software, hardware, and algorithmic. 
Computing system environments will continue to evolve but the basic understanding of these 
performance factors will provide solid foundations upon which robust and efficient legacy and 
new computational modeling applications can be developed. 

Chapters 2 and 3 provided the underlying hardware architectural and software 
algorithmic principles of two separate CPU/GPU computing systems defined in this work as 
System A and System B. Algorithmic factor adjustments such as switching from a one thread 

per row to one warp per row to solve the sparse matrix system^ = b engender an immediate 

performance boost. The same statement can be made for software factor adjustments such as 
data structure layout via the CSR to BCSR2x2, as the general improvement in locality mitigated 
the lack of real memory cache inherent to GPU devices. System B illustrated a distinct hardware 
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architectural advantage over System A, providing more than 3-times processing cores as well as 
4-times the number of registers and memory devices that executed on both sides of the clock 
pulse - affecting a double-pumped graphics pipeline. These initial chapter results were reflected 
for both the single and multiple CPU/GPU computing systems in chapters 4 and 5, with the 
added complexity of MPl communication for the latter. 

Chapter 4 also produced a computational complexity analysis of the CPU/GPU 
computing system that was used to project the performance of the presented candidate 
application within the context of both System A and System B machine environments. 
Adjusting the software and hardware variables in the complexity equation reflected actual 
performance results to within reasonable limits cohobating the interdependence of software and 

hardware factors of the CPU/GPU computing architecture at a mathematical level. The 
introduction of multiple CPU/GPU computing systems in chapter 5 fiirther advanced the concept 
of these performance factors as the mathematical complexity was shown to be an exponential 
factor of the number of SMPs per system utilized. Chapter 5 also exposed the cost of intra- 
nodal and CPU-GPU local host communication as a correlation of the percentage of locally 
defined non-zero elements held by a given GPU device registers and the factors off from the 
calculated ideal parallelism via domain decomposition as multiple processors/nodes - found as a 
negative factor on performance that is cubic in nature. The performance results determined with 
the presented candidate application can be applied to other computationally intensive HPC 
applications as well. Chapter 5 also revealed that the less regular input mesh defined by lOFT 
the less effect locality plays with regards to data compression formats - due to smaller likelihood 
of dense sub-matrices that are critical to blocked compression formats e.g., BCSR2x2. 

The presented candidate application is designed around computational elements built up 
using the FEM methodology, resulting in a sparse matrix system that is a well-documented point 
of computational intensity [21, 48, 71, 79, 110, 112]. The solution of systems involving sparse 
matrices is a common paradigm in the HPC modeling applications, all facing the same 
computational dilemma - how to optimally solve these algorithms using modem computing 
environments. Thus, the methodologies presented in this work can be applied to a wide range of 
computationally intensive applications built around sparse matrix systems and their solution in 
the computational modeling analysis. 

The current popularity of the GPU as a computationally powerful co-processor will 
continue to grow as demand for more powerful machines to execute HPC applications grows - 
this will be exacerbated by the trend in mobile computing. The on-chip architectures of mobile 
computing tables and smart phones have provided a new and interesting opportunity for GPGPU 
computing - fiised addresses [115]. The PCIe CPU-GPU communication bottleneck is well 
documented [21, 48, 71, 79, 110, 112] but a fusing of CPU and GPU on the same chip will likely 
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change this but will also create some new issues, e.g. memory device I/O. The fused systems, 
such as AMD APC processor use the slower DDR memory device rather than GDDR of the GPU 
resulting in the unusual situation of an efficient sparse matrix solution but with the opposite 
effect on dense matrix systems [114, 115]. 

The inexorable growth in multi-cored CPUs will also provide more computationally 
intensive power and a unique dynamic will develop as the GPU gets closer to the flexible 
memory structure of the CPU, and vice versa such as processors hke Intel's Sandy Bridge [114]. 
The developer wishing to attain optimal performance with these new machines will need to 
understand the intricacies of the software, hardware, and algorithmic factors as presented in this 
work. 
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Appendix A 

The CUDA Kernel code and associated functions and structures for the execution of 
sparse matrix-vector multiplication discussed in chapter 3 are presented below. 

CUDA File (matvec.cu): 

#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <cuda.h> 
#include <cublas.h> 

#defme BLOCKSIZE 16 

// HOST-Side C-Code interface for generalized matrix multiplication operation of the form 
// Ax = b' using CRS compression. 
extern "C" void mul_multBlocks_CRS(float *val, unsigned int vLength, unsigned int *rp, 

unsigned int rpLength, unsigned int *cp, unsigned int cpLength, float *b, 
float *x, unsigned int m, unsigned int n, unsigned int p, float &time); 

// HOST-Side C-Code interface for generalized matrix multiplication operation of the form 
// 'Ax = b' using BCRS 2x2 compression. 
extern "C" void mul_multBlocks_BCRS(float *val, imsigned int vLength, unsigned int *rp, 

unsigned int rpLength, unsigned int *cp, unsigned int cpLength, float *b, 
float *x, unsigned int m, unsigned int n, unsigned int p, float &time); 

// GPU-Code for generalized matrix multiplication operation of the form Ax = b' for CSR 
// format. 

 global void mul_multipleblocks_CRS(float *val, float *b, float *x, uint2 *rp, 
unsigned int *cp, unsigned int m, unsigned int n); 

// GPU-Code for generalized matrix multiplication operation of the form 'Ax = b' for BCRS 2x2 
// format. 

 global void mul_multipleblocks_BCRS(float4 *val, float2 *b, float2 *x, uint2 *rp, 
unsigned int *cp, unsigned int m, unsigned kit n); 

// Computes the current THREAD index. 
 device unsigned int compute_thread_index() { 

return (blockIdx.x*BLOCK_SIZE*BLOCK_SIZE 
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+ blockIdx.y*BLOCK_SIZE*BLOCK_SIZE*gridDim.x 
+ threadldx.x + threadIdx.y*BLOCK_SIZE); 

} 

void mul_multBlocks_CRS(float *val, unsigned int vLength, unsigned int *rp, 
unsigned int rpLength, unsigned int *cp, unsigned int cpLength,float *b, float *x, 
unsigned int m, unsigned int n, unsigned int p, float &time) { 

// Timing this operation. 
cudaEvent_t start, stop; time = O.Of; 

// Initialize EVENT Timers - CUDA. 
cudaEventCreate(&start);   cudaEventCreate(&stop); 

// Variables to be placed on GPU. 
float *val_d = NULL; float *b_d = NULL; 
float *x_d = NULL;     uint2 *rp_d = NULL; 
unsigned int *cp_d = NULL; 

// Compute ROW "pointer" BOUNDS to be pushed on the GPU 
uint2 *cpu_rp = new uint2[rpLength - 1]; 

{ 
for(unsigned int i = 0; i < rpLength - 1; i++) 

{ 
cpu_rp[i].x = rp[i]; 
cpu_rp[i].y = rp[i + l]; 

} 
} 

// Allocate and initialize values for GPU 
cudaMalloc((void**)&val_d, vLength*sizeof(float)); 
cudaMalloc((void**)&x_d, m*p*sizeof(float)); 
cudaMalloc((void**)&b_d, n*p*sizeof(float)); 
cudaMalloc((void**)&cp_d, cpLength*sizeof(unsigned int)); 
cudaMalloc((void**)&rp_d, rpLength* sizeof(uint2)); 

cudaMemcpy(cp_d, cp, cpLength*sizeof(unsigned int), cudaMemcpyHostToDevice); 
cudaMemcpy(rp_d, cpu_rp, rpLength*sizeof(uint2), cudaMemcpyHostToDevice); 
cudaMemcpy(val_d, val, vLength*sizeof(float), cudaMemcpyHostToDevice); 
cudaMemcpy(b_d, b, n*p*sizeof(float), cudaMemcpyHostToDevice); 
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} 

// Calculate dimensions for GPU Device 
dim3 grid; dim3 block; 

grid.x = (unsigned int)(sqrt((float)n)/BLOCK_SIZE + 1); 
grid.y = (unsigned int)(sqrt((float)n)/BLOCK_SIZE + 1); 
block.x = BLOCK_SIZE; block.y = BLOCKSIZE; 

cudaEventRecord(start, 0); 

// Kernel call 
mul_multipleblocks_CRS«<grid, block»>(val_d, b_d, x_d, rp_d, cp_d, m, n); 

// "Record" the stopping of this EVENT - i.e. return from kernel call. 
cudaEventRecord(stop, 0);   cudaEventSynchronize(stop); 

// Get the amount of time elapsed (in milliseconds) and DESTROY the CUDA timer 
// objects. 
cudaEventElapsedTime(&time, start, stop); 
cudaEventDestroy(start);   cudaEventDestroy(stop); 

// Retrieve results pointed by 'x_d' 
cudaMemcpy(x, x_d, m*p*sizeof(float), cudaMemcpyDeviceToHost); 

//Free Memory - CPU. 
delete [] cpurp; 

// Free Memory - GPU. 
cudaFree(val_d); 
cudaFree(b_d); 
cudaFree(x_d); . 
cudaFree(rp_d); 
cudaFree(cp_d); 

void mul_multBlocks_BCRS(float *val, unsigned int vLength, unsigned int *rp, 
unsigned int rpLength, unsigned int *cp, unsigned int cpLength, float *b, float *x, 
unsigned int m, unsigned int n, unsigned int p, float &time) { 

// Timing this operation. 
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cudaEvent_t start, stop; time = O.Of; 

//Initialize EVENT Timers - CUDA. 
cudaEventCreate(&start); cudaEventCreate(&stop); 

// Variables to be placed on GPU. 

float4 *val_d = NULL; float2 *x_d = NULL; 
float2 *b_d = NULL; uint2 *rp_d = NULL; 
unsigned int *cp_d = NULL; 

// Compute ROW "pointer" BOUNDS to be pushed on the GPU. 
uint2 *cpu_rp = new uint2[rpLength - 1]; 

{ 
for(unsigned int i = 0; i < rpLength - 1; i++) 

{ 
cpu_rp[i].x = rp[i]; 
cpu_rp[i].y = rp[i+l]; 

} 
} 

// Allocate and initialize values for GPU. 
cudaMalloc((void**)&val_d, vLength*sizeof(float4)); 
cudaMalloc((void**)&x_d, m*p*sizeof(float2)); 
cudaMalloc((void**)&b_d, n*p*sizeof(float2)); 
cudaMalloc((void**)&cp_d, cpLength*sizeof(unsigned int)); 
cudaMalloc((void**)&rp_d, rpLength*sizeof(uint2)); 

cudalV[emcpy(cp_d, cp, cpLength*sizeof(unsigned int), cudaMemcpyHostToDevice); 
cudaMemcpy(rp_d, cpu_rp, rpLength*sizeof(uint2), cudaMemcpyHostToDevice); 
cudaMemcpy(val_d, val, vLength*sizeof(float), cudaMemcpyHostToDevice); 
cudaMemcpy(b_d, b, n*p*sizeof(float), cudaMemcpyHostToDevice); 

// Calculate dimensions for GPU device. 
dim3 grid; dim3 block; 
grid.x = (unsigned int)(sqrt((float)n/2.0f)/BLOCK_SIZE + 1); 
grid.y = (unsigned int)(sqrt((float)n/2.0f)/BLOCK_SIZE + 1); 
blockx = BLOCKSIZE; block.y = BLOCKSIZE; 

cudaEventRecord(start, 0); 
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// Kernel call. 

mul_multiplebIocks_BCRS«<grid, block»>(val_d, b_d, x_d, rp_d, cp_d, m, n); 

// "Record" the stopping of this EVENT - i.e. return from kernel call. 

cudaEventRecord(stop, 0);   cudaEventSynchronize(stop); 

// Get the amount of time elapsed (in milliseconds) and DESTROY the CUDA 
// timer objects. 
cudaEventElapsedTime(&time, start, stop);   cudaEventDestroy(start);, 
cudaEventDestroy(stop); 

// Retrieve results pointed by 'x_d' 
cudaMemcpy(x, x_d, m*p*sizeof(float), cudaMemcpyDeviceToHost); 

// Free Memory - CPU. 
delete [] cpu_rp; 
// Free Memory - GPU. 

cudaFree(val_d); 
cudaFree(b_d); 
cudaFree(x_d); 
cudaFree(rp_d); 
cudaFree(cp_d); . 

C/C++ Matrix Class 

template <class T> class Matrix { 
private: 

T *data_; 

// Number of Rows and Cols, 
unsigned int m_; unsigned int n_; 

// Matrix Compression Format. 
FORMAT_TYPE type_; 

// I-Index (e.g. ROW "pointer" in CRS). 
unsigned int *rowptr_; 
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//J-Index (e.g. COLUMN "pointer" in CRS). 
unsigned int *colind_; 

// First Index into Sub-Block for BCRS (i.e. 2x2 sub-blocks) Format, 
unsigned int *nzptr_; 

// Non-Zero(s) from ORIGINAL matrix for CRS (i.e. 1x1 Sub-Blocks). 
T *val_; 

// The LENGTH of'val', 'colind_', 'rowptrj, and 'nzptr' Vectors respectively, 
unsigned int vLength_; unsigned int cLength_; unsigned int rLength_; 

// Compute the total number of Non-Zeros in this matrix, 
unsigned int numNNZ(); 

// Compress current matrix to CRS Format.(i.e. 1x1 Block.) 
void compressCRSO; 

// Compress current matrix to BCRS Format.(i.e. 2x2 Block.) 
void compressBCRSO; 

// CPU-Based Matrix-Vector Multiplication(s) using CRS, BCRS (2x2), and 
// NO Compression. 
void matVecMultCRS(T *b, T *x, unsigned int n); 
void matVecMultBCRS(T *b, T *x, unsigned int n); 
void matVecMultNONE(T *b, T *x, unsigned int n); 
void matMatMult_NONE(T *b, T *x); 

// GPU-Based Matrix-Vector Multiplication(s) using CRS, BCRS (2x2), and 
// NO Compression. 
void matVecMultCRS_GPU(T *b, T *x, unsigned int p); 
void matVecMultBCRS_GPU(T *b, T *x, unsigned int p); 
void matVecMultNONE_GPU(T *b, T *x, unsigned int p); 

public: 

// Create Matrix object from argument data of m-by-n dimensions. 
Matrix(T **data, unsigned int m, unsigned int n); 
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}; 

// Create Matrix object from argument data of m-by-m dimensions. 
Matrix(T *data, unsigned int m); 

// Compress current data element (i.e. matrix), REMOVING the ORIGINAL 
// Matrix elements. 

// PARAM: type The Matrix Compression used (e.g. CRS). 
void compress(FORMAT_TYPE type = CRS); 

// Computes Matrix-Vector Product as defined by the current matrix compression 
// format (if any). 
//PARAM: b Right-Hand Side 
// PARAM: X Solution Vector (holds solution) 
//PARAM: n Lengthof Right-Hand Side Vector and Solution Vector 
void matrixVectorMult(T *b, T *x, unsigned int n); 
void matrixMultCPU(T *b, T *x); 

// Computes Matrix-Vector Product as defined by the current matrix compression 
// format (if any) for the 
// GPU Device. 
//PARAM: b Right-Hand Side 
// PARAM: X Solution Vector (holds solution) 
void matrixVectorMultGPU(T *b, T *x, unsigned int p); 
void matrixMultGPU(T *B, T *C); 

T& operator()(unsigned int i, unsigned int j); 
void printCompressTypeO; 

~Matrix(); 
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C/C++ Class Template (calls CUDA file with Kernels) 

template <class T> 

void Matrix<T>::matVecMultCRS_GPU(T *b, T *x, unsigned int p) { 
if(val_ == NULL || rowptr_ == NULL || colind_ == NULL) 

throw MatrixException("Exception with GPU call!\n"); 

float gTime = O.Of; 

// Call kernel via C-Code interface. 
mul_multBlocks_CRS(val_, vLength_, rowptr_, rLength_, colind_, cLength_, b, x, m_, 

n_, p, gTime); 

cout« "GPU Execution Time: " « gTime « " (milliseconds).\n"; 

Derivations of Presented Equations: 

Equation (4.5) to calculate the average number of non-zeros per row when using the 
Compressed Sparse Row (CSR) data compression format is detailed below. 

The data-type utilized in this work is the single-precision float each of which is defined by 4- 
bytes. The assumption is an initial square matrix of M x M dimension so the number of non-zero 
elements for each row M is generated as a ratio subtracted from the GPU device global 

memory G,„^„. The numerator of the ratio is 4 times the number of rows M plus 1, to account for 

even numbers of elements as well as 4-byte floats. The denominator is the number of rows 
M times 8 which defines the square of a single float - generating a ratio that is less than 1 and an 
average of length of a single row in the original matrix. The maximum of 1 or the generated 

average number of non-zeros per row is chosen as the result i?^^ since the value should at least 

be a placeholder for any equation that employees this computed value. 

Equation (4,6) to calculate the number of blocks when using the Compressed Sparse 
Row (CSR) data compression format is detailed below. 

Each calculated block of data input to the GPU, A^^, is partitioned such that a single warp 

(32 threads) is given for each row M . The number of blocks is a ratio such that the numerator is 
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the product of the number of rows M and the average number of non-zero elements per row 

R,^2 ^iid the denominator is the total number of warps and SMPs for the GPU device multiplied 

by the number of threads per warp, 32. 

Ns ^ ,,     ,,    'I (4.6) 

Equation (5.3) to calculate the total solution time for multiple CPU/GPU computing 
systems when using Compressed Sparse Row (CSR) data compression format is detailed below. 

The estimated solution time for the multiple CPU/GPU computing system is adapted from the 
estimated time for the single CPU/GPU computing system which is detailed in equation (4.9.3) 

of chapter 4  given  as r^^„,  and the cost of local CPU-GPU host and  intra-nodal MPI 

communication defined as C. 

The assumption is made that the single CPU/GPU computing system solution time 

estimation 7^^„ and the number of active thread blocks per SMP jV^^^are already known.  The 

naive approach of computing the ratio of the single CPU/GPU solution time by the number of 

partitions P^^ must be modified to account for overhead of communications defined as C. Given 

each partition will produce an individual costC, C is divided by the number of partitions of the 

original global domain P^^ - this result is multiplied by the sum of the number of active thread 

blocks per SMP N^^.^ and the square root of the number of partitions P^^ represented in equation 

(5.3) as \N^j.g +-yJP,j )■   Multiplying [N^j-j^ +4^j by the communication ratio   generates 

an average cost of communication assuming a square matrix, thus the -^JP^j variable. 

The estimated solution time of multiple CPU/GPU computing system is not complete 
until the rate of growth/decay is calculated using an exponent of the ratio of the total number of 

partitions to the number of active thread blocks represented in equation (5.3) ase^™ . Using the 

generated rate of growth/decay e'^'"', the cost of communication will increase as the number of 
partitions increase and conversely will decrease as the number of active thread blocks increase. 

T 
T =     gP" 

/null    gpu £j 

Ad 
[NATB+4P^) 

Ps,l 

e"™ , (5.3) 

271 



Appendix B 

The CUDA Kernels and C/C++ code for the execution of Ml candidate application 
discussed in chapters 4 and 5 are presented below. 

Main-point-of-entry (fertm2d.cpp): 

// Name : fertm2d.cpp 
// Author        : Richard Haney 
// Version       : 1.1a 

// Description : Simulated Resin Transfer Molding (RTM) such that the global solution is solved 
// using Finite Element Method (FEM) and is based on original FORTRAN 
// COMPOSE2D code by Dr. Ram Mohan and Dale Shires. 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream> 
#include "Fertm.h" 
using namespace std; 

int main(int argc, char **argv) { 
Fertm fertm_(argc, argv); 
uitnfill = 0; double sumf= 0.0; 

long long int flops = 0; double soltime = 0.0; 

// initialize system 
fertm_. initialize(); 

// preprocess 
fertm_.preprocess(nfill); 

// process/solve system 
fertm_.process(nfill, sumf, flops, soltime); 

return EXITSUCCESS; 
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Interface and implementation of parent RTM object (IRTM.h): 

#ifiidefIRTM_H_ 
#defme IRTM_H_ 

#include <string> 
#include <iostream> 
#include <stdlib.h> 
using namespace std; 

// Interface for Resin Transfer Molding (RTM) to be used to in the simulation program. 
class IRtm { 
public: 

IRtmO; 
virtual ~IRtm(); 
virtual string get_filename() = 0; 

/* 
* Function initializes all value(s) to prepare for the execution of the RTM program 

* PLEASE NOTE:   Function must be called FIRST! 

*/ 
virtual void initialize() = 0; 

/* 
* Function executes preprocessing operations for RTM program returning the 
* initial volume filled. 

* PLEASE NOTE: Function must be called AFTER the initialize() and BEFORE the 
* processO 
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* @param numfill is the current number of filled nodes - assumed zero at this point 
* @retura total volume filled in model 
*/ 

virtual void preprocess(int &numfill) = 0; 

/* 

* Function executes the processing operations for RTM program - solving the system. 
* ******************************************************************** 

* PLEASE NOTE: Function must only be called AFTER calling the preprocess() 
* function. 
* ******************************************************************** 

* @param num is the number of filled nodes 
* @param sumf sum filled/volume 
* @param flops number of floating-point operations 
* @param solvetime total time for execution - in milliseconds 
* @param verbose if true outputs verbose info. 
*/ 

virtual void process(int &num, double &sumf, long long int &flops, double &solve_time, 
bool verbose = false) = 0; 

}; 
#endif/*IRTM_H_*/ 

Sub-class of RTM (Fertm.h): 

#ifiidefFERTM_H_ 
#define FERTM_H_ 

#include "IRtm.h" 
#include "FertmModel.h" 
#include "FertmParser.h" 
#include "CStopWatch.h" 
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#include "CircValidate.h" 
#include "Write.h" 

class Fertm : public IRtm { 
protected: 

FertmModel model_; FertmParser parse_; 
public: 

Fertm(int argc, char **argv); 
virtual ~Fertm(); 

// Function returns the current filename of the input file being "solved" by this class, 
string get_filename(); 

// Function returns the current "partitioned" filename being used for MPI-based 
// parallelism, if any 
string get_pfilename(); 

// Function performs initialization operations such that the FERTM 2D program can 
// execute properly, 
void initializeO; 

/* 
* Function executes all preprocessing operations for the FERTM 2D program to execute 

* properly. 

* @param numfill current number of filled nodes - assumed zero at this point 
* @retum total filled volume after preprocessing 
*/ 

void preprocess(int &numfill); 

/* 
* Function executes the processing operations for the FERTM 2D RTM - solving the 
* system. 

* PLEASE NOTE: Function must only be called AFTER calling the preprocess() 
* function. 

* @param num is the number of filled nodes 
* @param sumf sum filled/volume 
* @param flops number of floating-point operations 
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* @param solve_time total time for execution - in milliseconds 
* @param verbose if true outputs verbose info. 

*/ 

void process(int &num, double &sumf, long long int &flops, double &solve_time, 
bool verbose = false); 

#endif/*FERTM H */ 
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Appendix C 

The algorithms from chapter 2 of this dissertation defining the LCM solution strategy, 
sparse matrix-vector, and the preconditioned conjugate gradient iterative solver for sparse 
symmetric positive defmitive matrices. 

Algorithm 2.1: Implicit Pure FE methodology for LCM Computation 

(For time step n +1 and iteration m) 
1. REPEAT 

2. SET {v. Y^^ to {^,.}"    (save previous fill factor values) 

3. CALL assembleC for C. (assembleC forms lump mass matrix) 

4. CALL assembleK for Ky   (assembleK forms stif&iess matrix K ) 

5. CALL assembleLoad on q, (assembleLoad forms load vector 9) 

6. REPEAT 
7. SET boundary conditions on K^j 

(Modified load vector g) 

8. SET {g, }„ to C, {^,}" - C, {^,}-;' + M{q, }„ 

(Where K.j is K matrix with boundary conditions applied) 

9. SOLVE Li:,]„{/',L=kL 
(Compute new nodal resin fraction field using equation (4)) 

10. SET C„ {^, n = C„ {^, r - A/[iC, fc \^ + M{q^ },„ 

Q ^i }"t', - Q {^, }"^'  < # THEN 11. IF  ^,.,,.,.. ^, 

12. BREAK 
13. ELSE 

14. sET{^,}::'to{^,} 

15. ENDIF 
16. UNTIL mass resin convergence 
17. UNTIL all nodes are filled 

1H+1 

im+1 
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Algorithm 2.2: Preconditioned conjugate gradient (solves Ax = b) 
Input: Matrix/I and load/force vector i 
Output: solution vector x 

1. Set rg ^b-Ax^ 

2. Set z,^M-'r, 

3. Set Po^^o 
4. Set A; <= 0 

5. DO UNTIL CONVERGENCE 

6. . ry       A            "^        ^,  

Pk Apk 

7. x,^,^x,+a,p, 

8. f'kH ^r,-a,Ap;^ 

9. IFJr.-r,,,  <^) BREAK 

10. z<+i^^"''-A+i 

11. 
z^ r 

Pk ^ '":*"' 
^k rk 

12. Pk^X  ^ ^A+l + PkPk 

13. k<^k + \ 
14. END DO 
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Algorithm 2.3: Sparse Matrix-Vector Multiplication (CSR Compression) 

Input: Non-zero vectordat, load/force vector/?, row pointerrptr, column indices c/(5tc, and row 

length M 
Output: solution vector x 

1. Set / ^ 0 

2. Set 7 <= 0 

3. Set A: <= 0 

4. DO WHILE {i < M) 

5. Set j <= rptr[i 

6. Set k <= rptr[i +1 

7. DO WHILE {j < k) 

9. Set x[/J<= x[/]4 - [dat j xb cidx j ) 

10 Set ,/• en 7 +1 

11 END DO 
12 Set /■<=/ + ! 
13 END DO 
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Appendix D 

This appendix contains TECPLOT visualized results of resin flow progression contours 
of the input unstructured meshes. 

Device: CPU 

Time Filled 
(millisecands) 

Figure 96. Time filled for unstructured mesh MA CPU-Only (System A) 
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Device: GPU 

Time Filled 
(milliseconds) 

Figure 97. Time filled for unstructured mesh MA single CPU/GPU (System A) 

The following are the time-filled TECPLOT images for validation using the 2D circular 
plate model that was compared to analytical solution. 
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>   0 

(a.) CPU Fill Time (b.) GPU Fill Time 

Figure 98. Time filled single CPU/GPU with circular plate (System A) 
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Figure 99. Time filled multiple CPU/GPU with circular plate (System A) 
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(a.) CPU Fill Time (ms.) (b.) GPU Fill Time (ms.) 

Figure 100. Time filled single CPU/GPU with circular plate (System B) 
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Figure 101. Time filled multiple CPU/GPU with circular plate (System B) 

283 



Figure 102. Input mesh model lOFT multiple partition time-filled comparison (System A) 
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B-3 Probabilistic Analysis of Property Uncertainties using Resin Infusion Flow 
Modeling and Simulations 

Physics based flow modeling provides an effective way to simulate the resin infusion process in 
liquid composite molding processes for polymer composite structures. These are effective to 
provide optimal injection time and locations for given process parameters of resin viscosity and 
preform permeability prior to resin gelation. However, there could be significant variations in 
these two parameters during actoal manufacturing due to differences in the resin batches, mixes, 
temperature, ambient conditions for viscosity; in the preform rolls, compaction, etc., for 
permeability. Research to understand the influence of uncertainties in these parameters on the 
resin infusion time was initiated via a probabilistic modeling methodology using resin flow 
modeling and statistical analysis. Project activities and discussions from this work are presented 
next. 

Preform and Resin property uncertainties, role, and their effect in liquid 
composite process flow modeling 

Authors: Ram V Mohan, Henok Shiferaw, Vinaya Kelkar, Ajit Kelkar 

Pubhshed Paper: SAMPE 2012, Long Beach, CA, Paper 3230 

ABSTRACT 

Physics based flow modeling provides an effective way to simulate and understand the resin 
infusion process in liquid composite molding processes and its variants. These are effective to 
provide optimal injection time and locations for given process parameters of resin viscosity and 
preform permeability prior to resin gelation. However, there could be significant variations in 
these two parameters during actual manufacturing due to differences in the resin batches, mixes, 
temperature, ambient conditions for viscosity; in the preform rolls, compaction, etc., for 
permeability. The influence of uncertainties in these parameters on the resin inftision time is 
investigated using resin flow modeling and statistical analysis. Application of the process flow 
modeling and statistical analysis to understand the effect of preform and resin property 
uncertainties is demonstrated via a composite helicopter prototype part processed via vacuum 
assisted resin transfer molding. The probabilistic modeling methodology resulted in confidence 
envelopes to determine the probability for successfiil resin infusion prior to gelation, and 
estimate resin infusion time for any combination of viscosity and permeability. The effectiveness 
of these confidence envelopes to determine the probability for resin infusion success and 
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estimate the infusion time without a need for additional simulations and its usefulness for 
composite manufacturing engineers and technicians is presented. 

INTRODUCTION 

The manufacturing cycle time during resin infusion in liquid composite molding (LCM) of 
composite structural parts is influenced by various process and material conditions that include 
location of injection gates, fiber preform permeability, and resin viscosity. Successfiil infusion of 
dry fiber preform in LCM processes such as resin transfer molding (RTM) and its variants is one 
of the most complex and critical stages, and directly impacts the process performance and final 
quality of the part. Extensive effort has been conducted over the years on process flow modeling 
simulations for LCM processes and has been applied to several prototype developments 
[1,2,3,4,5]. Most of the process flow modeling approaches is based on deterministic models 
employing finite element based approaches for the space discretization. One such deterministic 
modeling methodology is an implicit transient approach based on transient mass conservation of 
the resin that has been validated and successfully demonstrated for very large scale simulations 
[5,6,7]. 

Deterministic physics based process flow modeling and simulations enable the down selection of 
optimal process parameters such as the injection gate locations. By analyzing various process 
scenarios through virtual simulations, effects of material and mold configurations can be 
thoroughly analyzed, even for a complex part. These deterministic process modeling simulations 
enable to study the effects of material, process and mold modifications, and obtain an optimal 
injection condition. This optimal condition can be subsequently employed during actual 
manufacturing process. Resin progression for the optimized injection condition and associated 
expected resin infusion time are based on specific values of key process parameter variables 
(fiber preform permeability and resin viscosity) that significantly influence the success of resin 
infusion. However, day to day, and batch to batch variations in the fiber preform rolls and 
preform layup differences can lead to variations in the fiber preform permeability. Similarly 
variations in the resin batches, ambient conditions, etc., can lead to differences in the resin 
viscosity. For a given composite part and mold configuration, injection gate conditions, any 
differences during actual manufacture of these two key process parameters can lead to significant 
variations from the modeling predictions. Deterministic modeling of all such variations of these 
two key process parameters would require significantly large number of flow modeling analysis. 
Variations in these two key parameters can be examined through statistical analysis, and 
provides an effective way to analyze their uncertainties, and develop confidence envelopes based 
on infusion time obtained from the simulations, and subsequently define the probability for 
successful infusion prior to resin gelation. 
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The present work employs a statistical analysis approach to analyze influence of uncertainties in 
these two process parameters of resin flow infusion. The statistical examination is built upon 
process flow modeling and simulations, and statistical analysis techniques. The influence of 
uncertainties in two key process parameters of resin viscosity and preform permeability on the 
resin infusion time is investigated. Resin infusion time output results for variations in the 
preform permeability and resin viscosity for given injection conditions are utilized to develop 
confidence envelopes using the calculated Cumulative Density Function (CDF). The obtained 
CDF is used to determine the probability for completion of resin infusion prior to physical resin 
gelation time. 

The application of this methodology for simultaneous variations of these two key processing 
parameters in LCM processes is presented, and demonstrated for a composite helicopter 
prototype part. The probabilistic modeling methodology resulted in confidence envelopes to 
determine the probability for successful resin infusion prior to gelation, and estimate infusion 
time for any combination of viscosity and permeability for a composite part and associated 
injection conditions. The effectiveness of these confidence envelopes to determine the 
probability for resin infiision success and estimate infusion time without a need for additional 
simulations is demonstrated. 

Present paper is organized as follows. A brief discussion of the process flow modeling 
methodology is described. This is followed by discussions on the application of the process 
modeling methodology and correlation with actual process observations for a composite 
helicopter prototype part processing. This composite part configuration also provides the 
demonstration application for the statistical analysis and development of the confidence 
envelopes. Details of the statistical analysis, development of confidence envelopes and results 
are discussed next. The probabilistic modeling methodology though illustrated with a 
demonstrative composite part configuration is applicable for other composite structures and 
provides an effective method to analyze and understand the effect of variations in resin viscosity 
and preform permeability. Furthermore, the developed confidence envelop provides 
manufacturing engineers and technicians a quick tool for evaluating the potential for successful 
resin infusion for any composite process run using the associated resin viscosities (for example, 
obtained through resin viscosity sampling) and preform permeabilities on any given day of 
manufacture. Examples of such scenarios are illustrated for this demonstrative composite 
prototype part configuration. 

Resin Infusion flow modeling 

Process Modeling Methodology 

Resin mass conservation and infusion flow models in LCM processes address the macroscopic 
transient resin flow infiltration through a complex fiber preform. Resin infusion flow modeling 
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method used in the present work employs a transient resin mass conservation equation coupled 
with the Darcian flow behavior (momentum conservation) in conjunction with a pure finite 
element methodology that is used for tracking resin progression inside a complex mold cavity, 
representing the net-shape composite structural part. The presence of the resin in an Eulerian 
mold cavity is tracked using a state variable ^, defining the resin infused state of the region. The 
state variable ^ varies between 0 and 1. The value of the state variable is 1 in the completely 
resin infused regions of mold cavity and 0 in the non-infiised regions of mold cavity. The 
pressure gradient in the partially filled regions where the value of the state variable is between 0 
and 1 is taken to be negligible. The integral form of the transient mass conservation equation is 
thus given by 

dt" 
—VP dQ. 

[1] 

where, K is the permeability tensor, n is the resin viscosity, P is the pressure field, and !F is a 
state variable representing the infused state of the resin. Further details are available in 
references [5] and [6]. The permeability tensor is a second order tensor with four terms, with 
three of them unique, in most aerospace structures made of thin composite preform layers, where 
the flow velocity is primarily in the in-plane directions. Such thin composite structural 
configuration and analysis has been employed for the composite prototype part configuration. 

Transient resin flow progression in the fiber preform geometry is analyzed through finite element 
geometry discretization via a pure finite element methodology [5] that is based on the above 
transient mass conservation equation. The state variable T (0 < T < 1) represents the infused 

state of a mold cavity region. 4^ = 0, represents the non-infused regions of dry fiber preform 
during transient flow. ^ = 1, represents fully infiised regions of dry fiber preform. Applying the 
Galerkin weighted residual formulation to the transient mass conservation equation, and 
introducing the finite element approximations for both state variable NK, and pressure field P, 
leads to a discretized system of equations given by 

OF + XP = ^ [2] 

In equation 2, C is the mass matrix representing the pore volume, K is the stiffness matrix 
associated with the pressure field. The time derivative term is discretized using equation 3. 

VJ/^^i+l n_ pn 

A/ 

In the above equation. A/ is the time step size for the transient problem, and q is the force vector 
representing the injection conditions. The boundary conditions are given by 
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dp 
— = 0 at mold walls, 
dn 

/* = 0 at flow front, and 

P = PQ prescribed pressure at inlet [4] 

or 

1-^0 prescribed flow rate at inlet, 

where  Pg   and q^  represent prescribed pressure and flow rate at the inlet(s), respectively. 

Initially, at time t=0, 
T = 1 at the inlet and 

T = 0 elsewhere. [5] 

The pure finite element methodology iteratively solves for the state variable, ^, that defines the 
infusion state and the associated pressure until complete mass conservation is achieved at each 
time step. A resin infiision flow modeling code based on the above methodology for a thin shell 
2.5D composite flow configuration is employed for the flow modeling simulations presented in 
the present work. 

Process Flow Modeling Application to a Composite Helicopter Prototype Part 

Process flow modeling analysis was employed to obtain optimal line based infusion 
configuration for a complex, composite helicopter prototype part consisting of bi-directional 
carbon preform and epoxy resin. Figure 1 presents the geometry and computational finite 
element mesh for a 2.5D thin shell resin infiision analysis. The complex part is approximately 
1.016 m X 0.635 m, with a compacted preform thickness of 0.18 cm. The permeability of the 
plain weave, bi-directional preform employed is 22.58E-10 m^. The viscosity for the epoxy resin 
used in the prototype part processing is 0.35 PaS. Resin infiision is driven by an atmospheric 
vacuum pressure differential of 98.2 KPa. Six different line based resin injection schemes were 
analyzed for the resin flow progression and total infiision time. Figure 2 presents the resin 
infusion progression from these process flow modeling simulations. The temporal resin 
progression contour is coded from blue to red showing the time progression of resin infusion. 
Table 1 presents the predicted resin infusion time obtained from flow modeling in each line 
based injection scheme. While the line based injection scheme B and C predicted higher resin 
infiision times, injection configurations E and F predicted lower resin infiision times. 
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Figure 1. Composite prototype part and finite element mesh. 

For the prototype part infiision, the placement of resin feed line along the curved part edge 
presents practical difficulties. Injection scheme F required two resin feed lines. Based on these 
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Figure 2. Transient resin flow progression with different line injection schemes. 

practical considerations and predicted resin infiision times obtained, resin injection scheme - A 
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was selected for the prototype fabrication of this helicopter composite panel and employed in the 
actual prototype processing process. Flow progression observations from the prototype 
processing of this composite part are presented and discussed next. 

Table 1. Predicted resin infiision time. 

Model Total FiU Time 
(minutes) 

Injection scheme A 37 
Injection scheme B 120 
Injection scheme C 115 
Injection scheme D 28 
Injection scheme E 23 
Injection scheme F 31 

Prototype Part infusion and simulation comparison 

Vacuum based resin infusion for this composite prototype part was setup in our processing 
laboratory employing line injection scheme - A via the H-VARTM process [8]. Resin infiision 
was performed with an aerospace grade epoxy resin with a flow viscosity of 0.35 PaS. Resin 
progression during this prototype part processing was observed and the resin infusion time was 
recorded. Figure 3 presents a snapshot of the resin progression during the infusion. The dark 
lines marked show the fully saturated resin front location at an instant of time that is used for 
simulation comparisons. 

Figure 3. Snapshot of resin progression dming prototype part infiision. 
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The infusion time for this prototype processing was about 45 minutes and is in good comparison 
with the predicted infiision time from prior process flow modeling simulations. The following 
were however observed during this prototype part resin infusion process. During the resin 

infusion, air bubbles were observed in the infused region and resin feed line. This required the 
resin feel line to be closed, check the sealing to ensure that there are no vacuum leaks; block the 
resin feed line on the preform midway, and restart the infusion process. Air bubbles, resin feed 
line modification, and vacuum leaks significantly influence resin progression and increase the 
infusion time. This corrective action resulted in an altered and new filling pattern that deviated 
from the resin progression from simulations shown for the injection scheme - A in figure 2. 

To understand the effect of this change in resin infusion and to check the capability flow 
modeling simulations to capture and emulate these variations, the injection boundary condition 
in the selected injection configuration - A was modified. The injection pressure differential in the 
flow modeling simulations was modified to match the conditions during actual prototype 
processing. This was emulated in the process flow modeling simulations through a pressure drop 
that varied only half way through the feed line from the injection end. This modified injection 
condition employed in the process flow modeling resulted in a new predicted infusion time of 47 
minutes. This concurs well with the infusion time obtained for the actual composite prototype 
part processing. Furthermore, the simulated resin front progression based on the above modified 
injection conditions showed reasonably excellent agreement to that obtained from the actual 
composite prototype part processing. The marked flow front line in black in figure 4 represents 
the resin saturated region from the simulations at the same instant of time as shown in the 
prototype part processing in figure 3. This flow front snapshot and resin progression patterns 
from the simulations demonstrated good agreement with that of the actual progression for this 
composite prototype part. Clearly, process flow modeling simulations emulate and capture the 
process variations during resin infiision if accounted correctly. 
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Figure 4. Transient resin front progression with modified injection condition. 
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The success of infusion on any given day during the production process however would depend 
on the completion of resin infusion prior to gelation. The infusion time for any given injection 
conditions are influenced by the variations in the preform permeability and resin viscosity. The 
preform permeability can show uncertainties and variations from batch to batch; variations 
during layup, vacuum pressure differential, etc. Resin viscosity can show variations and 
uncertainties from one manufacturing process run to the next. The understanding of these 
variations and obtaining predicted infusion time for the conditions on any particular day will 
require another process flow modeling simulation, preferably in real time that could become 
realistically impractical. A probabilistic analysis of these preform and resin preform 
uncertainties, their role, effect, and potential utilization of such analysis during actual day to day 
manufacturing are presented next. 

Probabilistic analysis of property uncertainties 

Composite process flow modeling simulations enable analysis of various process injection 
scenarios for optimal injection gate locations; understand subsequent effects of material and 
mold variations to ensure complete infusion prior to gelation. For a given mold and injection 
scheme configuration, resin infusion time are dependent upon the specific values of key process 
variables, preform permeability and resin viscosity and impact successfiil resin infusion. During 
repeated manufacturing, day to day, and batch to batch variations in fiber preform rolls and 
preform layup differences lead to variations and uncertainties in preform permeability. Similarly, 
resin batch variations and ambient conditions could cause variations and uncertainties in resin 
viscosity. Both critically influence the resin infusion time and success of resin infusion. 
Statistical variations and distributions of these two key process parameters were studied. A 
number of process flow modeling analysis for the composite helicopter prototype part, one for 
each of the statistically distributed permeability and resin viscosity parameter values were 
performed to obtain the corresponding resin infusion time. This provided a distribution of 
expected resin infusion time for the associated distributions of variations and uncertainties in the 
preform permeability and resin viscosity. Cumulative Density Function (CDF) of the obtained 
resin infusion time distribution was employed to obtain confidence envelopes. All statistical data 
analysis was performed using SPSS [9]. CDF and confidence envelopes determine the 
probability for completion of infusion before a specified resin gelation time for any combination 
of resin viscosity and preform permeability. Details, results and discussions from the 
probabilistic analysis for the prototype composite part are presented next. 
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Composite   Helicopter   Part 
Uncertainties 

Probabilistic   Analysis   of Permeability   and   Viscosity 

Statistical distribution of permeability and resin viscosity to understand the uncertainties were 
obtained employing statistical analysis package SPSS with a viscosity range of ±20% of a mean 
resin viscosity value of 0.35 PaS, and a ±50% variation from the mean permeability of 22.58E- 
10 w . Statistical analysis of the resin viscosity variation individually (keeping permeability 
constant) showed a linear variation in the computed resin infusion time. As expected, the resin 
infusion time increased with increase in viscosity. 

Histogram 

Figure 5. Resin infusion fill time distribution due to uncertainties in permeability and viscosity. 

Analysis of permeability variation individually showed a non-linear decrease in resin infusion 
time with increasing permeability. Based on this, five different viscosity values within the resin 
distribution and fifty different permeability values within the permeability distribution were 
selected for the statistical analysis of the coupled permeability and viscosity variations and 
uncertainties. This permitted a good statistical distribution of resin infusion time to be obtained 
to understand the coupled uncertainties in resin viscosity and preform permeability. 

Figure 5 presents the statistical distribution of the resin infiision time obtained from the process 
flow modeling simulations. The coupled permeability and resin viscosity uncertainty shows a 
skewed distribution though viscosity and permeability had a normal distribution. This confirms 
the non-linear effect from coupled viscosity and permeability uncertainties. Statistical analysis of 
the resin infusion data for this composite helicopter part and "line injection scheme - A" showed 
that viscosity contributed to 25% of the variation in the resin infusion time, while permeability 
contributed to 68% of the variations in the resin infiision time. Cumulative Distribution Function 
(CDF) and probability for the resin infusion fill time (FT) to be less than a specified resin 
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gelation time (GT) were obtained from the normalized distribution of the resin infiision fill time. 
Viscosity and permeability ranges for 80% and 95% probability/confidence level for the resin 
infusion fill time (FT) to be less than the resin gel time (GT) is presented in Table 2. A resin gel 
time (GT) of 55 minutes was used. 

Table 2. Viscosity - Permeability range for successful infusion. 

Viscosity {Ibf-s/inI PaS) Permeability (in' / m^) 
80% Confidence Level 

4.56 X 10"V 0.315 K>2.70x 10""/ 17.80E-10 
4.73 X 10"V 0.327 K>2.80 X 10"V 18.06E-10 
5.07 X 10"'/0.350 K>3.00x 10"*'/19.35E-10 
5.36 X 10"V 0.370 K>3.32x 10"V21.42E-10 
5.92 X 10"'/0.409 K>3.49x 10"V22.52E-10 

95% Confidence Level 
4.56 X 10"'/0.315 K>2.90x 10"Vl8.71E-10 
4.73 X 10"'/0.327 K>3.00x 10"Vl9.35E-10 
5.07 X 10"'/0.350 K>3.52x 10-''/22.71E-10 
5.36 X 10"'/0.370 K>3.73 X 10"V24.06E-10 
5.92 X 10"'/0.409 K>3.98x 10"V25.68E-10 

Figure 6 presents the viscosity and permeability ranges that would ensure 80% and 95% 
probability and confidence of resin infiision fill time (FT) to be less than the gelation time (GT) 
for successful infusion. Any permeability and viscosity combination that is within the shaded 
region of figure 6 would indicate the associated probability and confidence level of successful 
infusion. For example, permeability - viscosity combination within the 95% confidence interval 
shaded region in figure 6(a) would indicate a 95% probability of successful infusion prior to 
gelation. This confidence for successfiil infiision can be obtained without a need for additional 
real time simulations with the associated viscosity and permeability on the actual day of 
manufacture. 
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(a) 80% confidence level (b) 95% confidence level 

Figure 6. 80% and 95% confidence envelope for permeability and viscosity uncertainties. 

The expected infusion time can also be estimated from the probability and the associated resin 
infusion fill time data obtained from the statistical analysis [10]. For large complex parts, the 
computing time for the flow analysis can be significant and preclude any real time simulations. 
Probabilistic analysis and confidence envelopes as discussed in this paper can be developed for 
any composite part and processing configuration prior to actual full scale manufacturing. This 
not only enables an understanding of the effect of permeability and viscosity uncertainties prior 
to full scale manufacture. It also provides an effective means to determine the probability of resin 
infusion success based on the conditions and variables during actual manufacture to estimate the 
expected resin infusion time without a need for additional full scale process flow modeling 
simulations. The potential application of the developed confidence envelope is demonstrated 
next. 

Application of Confidence envelope 

The probability analysis methodology for understanding the uncertainties discussed in this paper 
can be applied for any composite part processing application. The technique can be expanded 
and is applicable even if there are varying regions of permeability within a complex part to 
further consider their associated uncertainties. The developed confidence envelopes provide 
composite manufacturing engineers and technicians an easy to use analytical capability to 
determine the probability and confidence of successful infusion prior to resin gelation and 
estimate infusion time for a combination of preform permeability and resin viscosity on any 
given day of manufacture. This can be obtained without a need for additional flow modeling 
simulations, and are effective to not only understand the effect of these parameter variations, but 
also estimate the process success. This is more desirable and efficient in large complex 
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composite parts where the process flow simulations can take significant computational time. 
Two demonstration scenarios of the application of the confidence envelopes developed for the 
prototype composite helicopter part are illustrated next. 

Processing Scenario 1 

A composite manufacturing engineer/technician collects resin viscosity data and obtains the 
preform permeability of the batch of preform used. On a given day, these values of resin 
viscosity and permeability are 0.366 PaS and 20.97E-10 in respectively. This resin viscosity, 
permeability data point is identified to be within the 95% confidence region for the prototype 
composite helicopter part as shown in figure 7-a. In addition, an estimation of the expected resin 
infusion time can also be obtained from a plot of the resin infusion time and associated 
probability. 

Processing Scenario 2 

On a different day of manufacture, resin viscosity of the resin batch used is 0.389 PaS and the 
permeability of the preform batch is 17.74E-10 rn. This viscosity, permeability combination is 
within the 80% confidence region for the prototype composite helicopter part, but well outside 
the 95%) confidence region. 

Thus by using the pre-developed confidence envelopes associated with any composite part, a 
composite manufacturing engineer and technician can estimate the confidence of successful resin 
infiision prior to gelation on any given day of manufacture using the associated preform 
permeability and resin viscosity values. Further, using their experience and knowledge over 
several days of production, composite manufacturing engineers and technicians can decide if 
corrective actions are needed prior to and during actual manufacture to ensure the success of 
manufacture on any given day. 
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Figure 7. Application confidence envelope during actual manufacture. 

Concluding remarks 

Process flow modeling simulations and analysis of resin infiision in LCM processes are effective 
to obtain resin infusion time and understand transient progression of resin enabling the 
determination of optimal injection conditions. However these simulated behaviors are based on 
the key process parameters of preform permeability and resin viscosity employed in the 
simulations. Significant variations in these two key process parameters can occur during the 
actual manufacture and during production cycle for a composite part. A probabilistic analysis 
approach for coupled effect of uncertainties of these two key process parameters using resin 
infusion process flow modeling simulations was presented. The applicability of the methodology 
was demonstrated for a composite prototype part processing employing vacuum based resin 
infusion. The computational modeling framework and probabilistic methodology that resulted in 
the development of confidence envelopes provides composite manufacturing engineers and 
technicians an estimate of the confidence for successful resin infusion prior to resin gelation, and 
expected resin infiision time on any given day of manufacture using the associated preform 
permeability and resin viscosity values. Furthermore, this can be obtained without a need for 
additional flow modeling simulation analysis using associated parameters on the day of 
manufacture. This provides an enabling and effective simulation based analytical capability for 
composite manufacturing engineers and technicians coupled with their experience over several 
infusion and processing runs to decide on corrective actions prior to, and during actual 
manufacture to ensure success of manufacture on any given day and part production run. The 
applicability of the confidence envelopes was demonstrated with illustrative scenarios based on a 
composite helicopter prototype part. The techniques and methods discussed can be extended for 
any composite structure and its processing with liquid resin infusion processes. 
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Abstract 

Deterministic physics based flow modeling provides an effective way to simulate and 

understand the resin flow infusion process in liquid composite molding processes and its 

variants. These are effective to provide optimal injection time and locations prior to 

gelation for given process parameters of resin viscosity and preform permeability. 

However, there could be significant variations in these two parameters during actual 

manufacturing. This paper presents simulation based statistical analysis of uncertainties of 

these process parameters involved in the resin flow infusion. Two key process parameters, 

viscosity and permeability and their statistical variations are examined individually and 

subsequently in combination for their impact on the associated injection time. Values from 

statistical probability distribution of the process parameters were employed to find the 

solution space for this engineering application through deterministic physics based process 

flow modeling simulations. A bivariate confidence envelope was developed using the 

appropriate Cumulative Density Function (CDF) for a 95% probability of successfully 

completing resin infusion prior to physical resin gelation time. A logistic regression model 

for the influence of resin viscosity and permeability on the binary response of 

successful resin infusion is presented and conforms well to the sensitivity analysis 

inferences. 

Keywords: Uncertainty quantification; Composite process flow modeling; statistical analysis; 

Deterministic computational modeling and parameter variations; logistic regression analysis; 
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Introduction 

Liquid composite molding (LCM) processes such as resin transfer molding (RTM), vacuum 
assisted resin transfer molding (VARTM), and its variants are increasingly used as 
manufacturing processes for composite structures [1,2,3,4]. A schematic of the liquid composite 
molding process for composite structures is shown in figure 1. These processes are based on the 
impregnation of a net-shape dry fiber preform with a low viscosity polymeric resin. The 
polymeric composite part is then formed after the complete infiltration of the dry fiber preform 
prior to resin gelation and subsequent curing reaction. The manufacturing cycle time during resin 
infiision is influenced by various process and material conditions including the location of the 
injection gates, fiber preform permeability, and resin viscosity. Successfial infiision of the dry 
fiber preform in liquid composite molding processes is one of the most complex and critical 
stages in the process and directly impacts the process performance and final quality of the part. 
Resin infusion has to be completed before physical resin gelaUon while the resin can sfill flow. 
This limiting time for a resin is characterized by its resin gelation time. 

Deterministic physics based process modeling and simulations enable the down selection of 
optimum process parameters such as the injection gate locations. Extensive effort has been done 
over the years on process flow modeling simulations for resin flow infiision and has been applied 
to several prototype developments [5,6,7,8,9,10,11]. These deterministic simulation based 
optimal conditions can be subsequently employed during the actual manufacturing process. 
These optimal process conditions are based on specific values of key process parameters of fiber 
preform permeability and resin viscosity that significantly influence the success of resin infiision. 
However, day to day, and batch to batch variations in the fiber preform rolls and preform layup 
differences during manufacturing can lead to variations in the fiber preform permeability. 
Similarly variations in the resin batches and ambient conditions can lead to differences in the 
viscosity. Such variations in the key parameters can be examined through statistical analysis, and 
provides an effective way to analyze these key process parameter uncertainties, and develop 
associated confidence envelopes. 

In the present paper, we describe a non-deterministic statistical simulation analysis approach to 
analyze the influence of uncertainties in the process parameters for resin flow infiision. The 
statistical examination is built upon deterministic computational physics based process flow 
modeling simulations, and statistical analysis techniques. Two key process parameters and their 
statistical variations are examined, initially based on individual parameters and subsequently as a 
combination of these two parameters. The data values from probability distribution of the key 
process parameters determine the modeling analysis solution space. A confidence envelope is 
subsequentiy developed using the calculated Cumulative Density Function (CDF). Statistical 
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CDF determines the probability for completion of infusion prior to a physical resin gelation time 
for variations in a real-valued random variable (for example, a key process parameter) with a 
given probability distribution. Such confidence envelopes are obtained for variations in a single 
parameter and coupled two parameters. Our approach thus employs non-deterministic statistical 
analysis in conjunction with deterministic physics based computational modeling and 
simulations. This provides an effective way to analyze and understand the effect of key 
parameter variations on the resin infusion success. The confidence envelopes obtained through 
statistical analysis provides an effective means to determine the probability for successful resin 
infiision prior to resin gelation time for the actual process parameters that can change. Further, 
the expected resin infusion time can be obtained without a need for additional full scale 
simulations. In engineering applications, due to inherent uncertainty and variation in materials 
and processes, model and simulation based uncertainty quantification within an appropriate 
statistical probabilistic framework is required. Present paper provides and demonstrates the 
application of such a statistical simulation analysis framework within the context of resin 
infusion flow modeling for liquid composites processing. 

Deterministic Resin Infusion Flow Modeling 

Resin mass conservation and process flow models address the macroscopic transient resin flow 

infiltration through a complex fiber preform in LCM processes. The deterministic resin infusion 
flow modeling method in the present work employs a transient resin mass conservation equation 
coupled with the Darcian flow behavior (momentum conservation) in conjunction with a pure 
finite element methodology that is used for tracking the resin progression inside a complex mold 
cavity representing the net-shape composite structural part. The integral form of the transient 
mass conservation equation solved during process flow infusion modeling is given by 

d A 

(1) 

where, K is the permeability tensor, \\ is the resin viscosity, P is the pressure field, and T is a 
state variable representing the infused state of the resin inside the mold cavity. The permeability 
tensor is a second order tensor with four terms, three of them unique, in most aerospace 
structures made of thin composite preform layers. Transient progression of the resin through the 
fiber preform geometry is analyzed with a pure finite element methodology [9] that is based on 
the above transient mass conservation equation. Further details are available in references [9] and 

[10]. 

Optimization of injection locations based on these deterministic physics based modeling have 
employed genetic algorithms (GA), continuous sensitivity equation (CSE) analysis, and hybrid 
approaches (coupled GA and CSE) to determine optimal injection gate location in LCM 
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[12,13,14,15,16,17,18]. These methods obtain optimal injection gate locations based on 
minimizing the resin infusion time. Though these techniques allow the determination of optimal 
injection gate locations employing deterministic modeling and simulation of resin flow infusion, 
they do not address the stochastic, non-deterministic, statistical variations due to material, 
process setup; their influence on the resin infusion time and flow progression once the optimal 
injection gate location is obtained. 

Non-Deterministic Statistical Analysis 

In this work, effect of the uncertainties and variations in two key parameters (viscosity and 
permeability) on the infusion time and flow front progression for a vacuum based resin infusion 
process was studied. 

Resin flow rate is governed by many process parameters, such as: a) Injection pressure, b) Mold 
temperature, complexity, and fiber reinforcement; c) Resin chemistry and rheology (resin 
viscosity), d) Permeability of the preform. For a given mold configuration (mold complexity) 
and injection conditions (injection pressure), resin flow behavior is heavily influenced by 
preform permeability and resin viscosity. The resin flow velocity through fiber preform given by 
Darcy's law (equation 2), defines the flow behavior in process flow models and governs the resin 
infusion or filling time (FT). 

v = --VP 
77 (2) 

where;      V = Velocity of Flow front 

K = Permeability tensor 

r] = Viscosity of the resin 

V P = Pressure gradient (V: gradient operator) 

Resin infusion and fill time (FT) thus strongly depends upon: Preform Permeability (K) and 

Resin Viscosity (ri). Permeability is a physical property of the fibrous material quantifying the 

resistance to resin flow. The filling time (FT) and resin infusion flow pattern depend heavily on 

the preform permeability and is inversely related. Resin viscosity is another key important factor 

in determining the infiision time. The success of resin infusion depends upon the complete 

infusion of dry fiber preform prior to resin gelation. Every resin system has a certain gelation 

time (GT) or "pot life", and it is important to complete resin flow infusion prior to this gelation 
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time. However, inherent variations and uncertainties in materials and processes affecting the 
permeabihty and resin viscosity can lead to changes in resin fill time (FT) and impact the 
successful infusion prior to resin gelation time. Statistical analysis of such variations and 
uncertainties in these two key parameters is presented next. 

Prior to analysis of coupled parameter variations, a sensitivity analysis was conducted to 
determine the change in model output values of FT that may result from changes in model input 
values (for resin viscosity and preform permeability). This sensitivity analysis thus measures the 
change in the model output in a localized region of the input space. Implicit in this sensitivity 
analysis were the assumptions that statistical distributions for the input values were correct and 
that the model is a sufficiently realistic description of the processes taking place in the system. 

First step was to examine the effects of changes in a single parameter value or input variable 
assuming no changes in other inputs. The analysis was then extended to examine the combined 
effects of multiple, but independent, sources of error (viscosity and permeability). Probability 
distribution models were developed for each parameter around their fixed mean and standard 
deviation values. Statistical models employed predict the probability for successful and 
complete resin infusion before resin gelation defined by FT < GT. Sensitivity analysis for the 
parameter uncertainties was developed using the following methodology: 

Statistical Analysis Method: 

(1) Generate the parameter space data to accommodate variations in two key parameters: 
permeability and resin viscosity. 

Variable values for permeability (K) and viscosity (ri) were generated using normally 
distributed random errors model around a fixed mean ( rf mean resin viscosity; x. mean 
preform material permeability) using statistical analysis software. Normal distribution 
was used to describe the distribution of these errors because it has been observed that 
normal distribution often describes the actual distribution of the random errors in real- 
world processes reasonably well. Further, mathematical theory behind the normal 
distribution is well developed and supports inferences on fiinctions of data and processes 
being modeled [19,20]. 

(2) Perform resin infusion flow modeling simulations for each of the variable values using an in- 
house deterministic, physic based process flow modeling analysis code. Single parameter 
models were generated for each input parameter of interest (r|, K) and then the model was 
extended to include both viscosity and permeability, to estimate the corresponding resin 
infusion time. 
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(3) Obtain the probability of success (complete resin infusion of the preform prior to resin 
gelation). Appropriate cumulative density ftinctions (cdf) were used to calculate the 
probability that the simulated resin infiision time (FT) based on given permeability and resin 
viscosity values will be less than the resin gelation time (GT). 

(4) Develop a 95% confidence envelope (bivariate confidence limits) for successful resin 
infusion - i.e., range of permeability (K) and viscosity (rj) values that will result in optimal 
Fill Time (FT) in more than 95% of cases. 

The above two steps (3, 4) were based on the following considerations: 
(a) The process of resin infusion in the preform and the associated infusion time is 

influenced by statistical (non-deterministic) process uncertainties and variations in 
key process parameters of resin viscosity and preform permeability. Statistical 
analysis methodology presented captures these variations and uncertainties. The 
random errors follow a normal distribution with a mean of zero and a constant 
standard deviation. 

(b) Data are randomly sampled. 

The application of the sensitivity analysis for the uncertainty quantification using statistical 
probabilistic methodology and computational simulations as discussed above for an illustrative 
composite helicopter part geometry is presented next. 

Sensitivity Analysis for a Complex Helicopter Prototype Part Model Geometry 

Figure 2 illustrates the composite part geometry and the associated finite element mesh 
employed for the deterministic resin infusion process flow modeling. Flow modeling 
simulations were conducted to find a practical and optimal injection configuration for this 
complex composite part that would be used in the actual resin infusion of the prototype 
composite part. Line injection with a resin feed line in the middle of the composite part 
optimized the FT for this part and provided practical infiision scheme setup for resin infusion 
[21]. 

Statistical analysis of variations and uncertainties in two process parameters of resin viscosity 
and permeability is presented next. A common injection strategy was constantly employed in all 
cases. Statistical analysis focused on the two key property parameters, resin viscosity and 
preform permeability, natural variations in which are likely to impact the completion of resin 
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infusion prior to gelation. Resin viscosity and preform material permeability values employed 
are those for the fiber and resin used for this helicopter part geometry. 

Results and Discussions: 

(1) Parameter space data were generated for variations in these two key parameters, preform 
permeability and resin viscosity. Means and variations for viscosity and permeability were 
based on literature review, and ranges that can be expected in this field for these parameters. 
Statistical analysis software SPSS [22] was used to generate 100 resin viscosity and 100 
preform permeability values with the following properties: Both variables were generated 
with given means, standard deviations and normally distributed random errors as follows: (rj 
~ N(5.10 X 10"= (Ibf-s/in-), 0.28 x 10'^ (Ibf-s/in"), K~ N(3.41x 10"^ (in"), 0.59 x 10'^ (in")) as 
shown in Table 1. 

Single parameter Variation: 

Single-parameter models for their influence on Fill time (FT) were obtained independently for 
each of the two variables of interest (keeping the other variable constant). The associated fill 
time were obtained from process flow modeling simulations for this composite part. It was 
observed that each of the independent normal random variables T] and K were linearly related to 
the outcome variable FT. Consequently, FT was also a normally distributed random variable for 
each independent variable t) and K. 

It was also observed that for each of the FT models mean FT was less than 55 minutes, the 
gelation time (GT) for the resin used. Resin viscosity values varied within a narrow range and 
had less impact on fill time with all FT(ri) values less than 55min. Preform permeability, K 
values had a higher range of variations and hence had more impact on FT variability; however it 
was observed that successful resin infusion (FT(K) < 55mins (GT)) occurred in 87% of cases, 
and for permeability values, K>2.735 x 10"^ (in^). 

Two parameter Variations: 

Next, FT was estimated with both parameters varying in the model. From the 100 viscosity 
values generated, one resin viscosity value was randomly selected from each quintile (20* 
percentile group), these five viscosity values covered the entire range of the distribution (q: 4.56, 
4.73, 5.07, 5.36, and 5.92 (x 10"^ Ibf-s/in"). Similarly, 50 values of permeability (K) were also 
randomly and independently selected from the 100 values generated earlier. Each viscosity 
value was matched with 50 permeability values creating an input vector of 250 to obtain a 
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distribution of the associated predicted fill time (FT) employing composite process flow 
modeling simulations. 

The distribution of fill time (FT) values predicted using resin infiision flow modeling was right 
skewed with mean FT of 49.22 mins and standard deviation of 9.03 mins. Fill time (FT) variable 
was normalized using a natural log transformation. Both independent random variables {r\, K) 
were related to FT with viscosity, r|, explaining approximately 26% (R" = 0.26), and 
permeability, K, explaining about 71% (R^=0.71) of the variation in FT. As expected, variations 
in permeability had more impact on the time required for successful resin infusion than 
variations in the viscosity. 

One of the goals of this study was to develop a bivariate envelope of viscosity and permeability 
ranges to predict successful resin infusion. A normal cumulative density fiinction (cdf) was 
generated to obtain the probability of FT < 55mins (GT) or LnFT < 4.0 for each value of the 
normal variable LnFT. A plot of cdf of LnFT against permeability for each viscosity value was 
obtained and studied, and the permeability value corresponding to the 95"^ percentile of the cdf 
of LnFT was noted. For example, as shown in figure 4, at viscosity level of r| = 4.56 x 10"^ (Ibf- 
s/in'), a permeability value, K=3.58 x 10"^ (in"), will give a 95% probability that LnFT will be 
less than 4.0 (or FT<55mins (GT)). 

For each of the five viscosity values within its entire range (4.0 x 10'^ Ibf-s/in" - 6.0x10"^ Ibf- 
s/in"), cdf for the normal random variable LnFT was plotted against permeability to obtain K 
values for a 95% probability that LnFT will be less than 4.0 or fill time (FT =55mins), for this 
composite part geometry and injection conditions. These K values were obtained for each r\ 
generating a 95%) confidence envelope for successfiil resin infusion for the given geometry and 
injection conditions. 

The confidence envelope shown in figure 5 provides a tool developed from statistical analysis 
and simulations that manufacturing engineers can quickly use to predict the potential for 
successful infusion taking into account variations in two key process parameters of permeability 
and viscosity. If resin viscosity values and permeability values fall within the range (shaded 
area - Infusion success chart; figure 5), the probability of successfiil resin infusion will be at 
least 95%. 

The potential of resin infiision success confidence envelope presented in figure 5 was verified by 
actual manufacturing of the composite part in our composite processing laboratory. Prior to 
resin infusion it was observed that resin viscosity value was 5.07x10'^ Ibf-s/in" and material 
preform permeability was 3.5x10"* in".   Both values are just outside the shaded region of the 
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confidence predicting a shade less than 95% probabihty of successful completion. Even with 
minor variations in the vacuum pressure differential experienced during the actual process, actual 
resin infusion was completed in 45 minutes. The estimated fill time from the "Probability - 
LnFillTime" plot obtained during the statistical analysis is about 47 minutes. This matches well 
the infusion time obtained from an independent process flow modeling simulation performed. 
Even with minor variations in the vacuum pressure differential experienced during experimental 
processing, actual resin infusion in the experiments was completed in about 45 minutes. The 
experimental data and full simulation data clearly conform to confidence envelope predictions 
for successful resin infusion. They clearly demonstrate the effectiveness of the simulation based 
statistical analysis of variations and uncertainties in the development of confidence envelope and 
its application. 

The influence of the resin viscosity and permeability on the binary response of successful resin 
infusion was further statistically analyzed following a logistic regression model [23]. Compared 
to other regression models, logistic models allow the use of multiple explanatory variables [24] 
on a binary outcome. Present statistical analysis involves two explanatory variables that pose 
nonlinearity. Other parameters that influence the successful infusion can also be added to logistic 
models, and has been employed in the present work. 

Logistic Regression Analysis 

Logistic regression model is one of the several binary response models that have been used to 
model dichotomous outcomes in engineering. An interesting case study of this model for failure 
mode and effect analysis in pharmaceutical tableting tools [25]. Another use of this model in 
health care six sigma project can be found in [26]. Other examples of this model use for 
understanding explanatory variables and binary response of space shuttle challenger disaster; 
incubation temperature and sex (male/female) outcome of turtles hatched can be found in [23]. 

A logistic regression model containing two continuous independent variables (viscosity and 
permeability) and a dichotomous dependent variable, FTD (FTD=1 if FT < 55mins (GT) and 
FTD=0 if FT>55mins (GT).) in considered to predict successfial infusion. 

General Logistic Regression Model is given by [23,24]: 

logit{Y)=  ^«(^)=  a + jSi^i + JS2Z2 (3) 

Where JI = Probability (Y = outcome of interest | Xi = xi, X? = x?) 
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ga+^lXi+^2^2 

1+e«^+^i •'^1+^2^2 ^"^^ 

For our model: 
Y = FTD = 1 or 0 (if FT < 55mins (GT) then FTD=1; else if FT >55mins (GT) then FTD=0) 
X\ = viscosity (ri), and X2 = permeability (K), 

The Logistic regression output in Table 3 suggests that the constant a is not a significant part of 
the model and hence was excluded from the probability analysis. Viscosity and Permeability 
remain independent and uncorrelated to each other. Probability of success of FTD (n) can also 
be predicted using: 

-14.44 J]+25.Telf 

]_+ g-14,44Tl+2S.76K (5) 

The coefficients can also be interpreted as follows: 

Viscosity: For every 0.1 decrease in Viscosity in the given range, the odds of completing 
infusion (success) increases 4.2 times. [(1/10 x 14.42) = 1.442; e*''*'*-* = 4.2] 
Permeabilitv: For every 0.1 increase in permeability the odds of completing infiision (success) 
increases 13.14 times. [(1/10 x 25.764) = 2.576; e*^"^' = 13.14] 

As seen earlier, impact of permeability on FT is ahnost 3 times that of viscosity and logistic 
regression analysis conforms well to sensitivity analysis inferences. 

Concluding Remarks 

In engineering applications, due to inherent uncertainty and variation in materials and processes, 
model uncertainty quantification within an appropriate probabilistic and statistical framework is 
required. A statistical simulation fi:amework within the context of resin infusion flow modeling 
was presented and demonstrated in the present paper. Statistical analysis quantified that 
variations in permeability have higher impact than viscosity variations for successful resin 
infusion. Even minor variations in the preform layup can lead to notable changes in flow 
progression and fill time than smaller changes in the resin viscosity. Statistical analysis of 
uncertainties in parameters and confidence envelope as discussed in the present paper are 
effective to provide boundaries of actual process parameters for successfiil resin infusion prior to 
resin gelation time. 
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Figure 1: Schematic of Liquid Composite Molding Process for Composite Structures 

(a) (b) 

Figure 2: a) composite part geometry, b) Finite element geometry 
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Figure 3: Fill Time was linearly related to (a) Viscosity (directly) and (b) Permeability 
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Figure 4: Cumulative Density Function (cdf) of LnFT against Permeability, at viscosity of 
4.56 X 10'^ (Ibf-s/in^). 
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Figure 5: Range of viscosity and permeability values for 95% probability of successful 
infusion before gelation 
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C. Educational Activity and Student Support 

North Carolina A & T State University (NCAT) is a land grant, historically black college and 
university (HBCU) with the graduate Masters Computational Science and Engineering (CSE) 
program established in 2005. The present project efforts were instrumental in the approval of the 
Ph.D. program in computational science and engineering (CSE) that has admitted its first class in 
fall 2010. NCAT also recently established the graduate programs (MS and Ph.D.) in 
nanoengineering. Research initiated and established through the ONR award provided the 
foundation for this establishment of the new program and paved the way for NCAT to lead such 
efforts in this arena. NCAT is the first HBCU with a graduate program in nanoengineering. 
Currently the CSE graduate programs has nearly 25 students and the newly established 
nanoengineering program has a class of 50 students, majority of whom are under-represented US 
citizens within the first year of its establishment. 

Dr. Mohan is currently a faculty member of nanoengineering focusing on developing the 

computational nanoengineering area. Within the past two years. Dr. Mohan led the 
computational nanoengineering focus area efforts in research, education and infrastructure 
development. The present ONR efforts have enabled these activities and in addition to the 
research initiatives and activities discussed in this report. Dr. Mohan's efforts had resulted in 
new research activities focusing on nano to continuum modeling of cementitious materials; 
computational modeling of bio-nano interfaces; integrated computational materials science and 
engineering for poljTneric composite materials. All these would not have been possible without 
the ONR funding. The established and growing research in computational nanoengineering is 
fiieling these additional growths. In addition. Dr. Mohan also developed and taught a new 
graduate course in nanomodeling and applications. 

The new research directions and completed research over the years supported through ONR 
research funding enabled the development and teaching of these new graduate courses. The 
research areas related to computational nanomechanics, multi-scale modeling and 
nanoengineered materials leveraged and enabled through the present funding is benefiting the 
students of this program and will also leverage the opportunities from this new graduate 

program. The PI and a participating faculty member (Dr. Kelkar) are now part of this new 
graduate program in nanoengineering. The project funding was utilized to attract qualified 
minorities to focus in the research areas of computational nanoengineering. The educational 
activity fiinds from the project fiinding provided financial support to several graduate students to 
obtain graduate education at North Carolina A&T State University. The names and the 
demographic details of the M.S. and Ph.D. graduate students supported through this project 
funding are listed below. All these graduate students were either ftilly or partially supported 
through the project funding either directly or through the faculty release time funds. 
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Richard Haney Ph.D., White, USC, Male (Graduated, Currently at 
Army Research Laboratory, APG, MD) 

Henok Shiferaw M.S., African American, LPR, Male (Graduated, 
Currently working for Federal Government) 

Elvis Fefey African American, LPR, Male 

(Graduated with MS in Computational Science and 
Engineering; working with Hewlett Packard) 

Mariamma Sibide M.S. African American, Female (Graduate with a MS in 
computational science and engineering and pursuing 
Ph.D. in computational science and engineering. 

Krystal Knight M.S., African American, USC, Female (Graduated with 
a MS in computational science and engineering) and 
employed with industry. 

Connie Sidberry African American, USC, Female (Graduated with MS in 
Computational Science and Engineering) 

Patrick McCarter African American, USC, Male (Graduated with MS in 
Computational Science and Engineering and pursuing 
Ph.D.) 

Moussa Seek African American (Graduated with MS in 
Computational Science and Engineering and with 
computing industry) 

Bhushan Thatte Asian, Male (Graduated with MS in Computational 
Science and Engineering and working in software 
industry) 

Matthew Wiggins African American, USC, Male (Graduated with MS in 
Computational Science and Engineering) 

Hamed Sibide African American, Male (Graduated with M.S. in 
Computational Science and Engineering and working in 
computing industry) 

Abu Rasel Asian, Male (Graduated with MS in Computational 
Science   and   Engineering;    currently   employed   in 
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computing industry) 

Boding Liu Asian, Male (Graduated with MS in computational 
science and engineering) 

Terry Corbett Ph.D., African American, USC, Male 

Naveen Chnnannavar Asian, Male (Graduate with MS in Computational 
Science and Engineering and employed with industry) 

Kristen Rhinehardt M.S., African American, USC, Female (Graduated with 
MS in Nanoengineering) (Pursuing Ph.D. in 
Nanoengineering) 

Nafisa Sirelkhatim Ph.D., African American, USC, Female (Pursuing Ph.D. 
in Nanoengineering) 

Henry Ochije M.S., African American, Male (Graduated with MS in 
Nanoengineering, Pursuing Ph.D. in Nanoscience) 

Van Nguyen Ph.D., Asian, USC, Female (Pursuing Ph.D. in 
Computational Science and Engineering) 

Ahmed Mohammed Ph.D., USC, Male (Graduated with Ph.D. in 
Computational Science and Engineering and employed 
as a post-doc) 

Mahendran Samykano Ph.D., Male (Pursuing Ph.D. in Nanoengineering) 

The project funding is enabling the education and training of future workforce (esp. 
underrepresented minorities) in this critical technology area with six Ph.D. students supported 
through this funding at various levels. 

The project efforts enabled the post-doctoral training and mentorship of two researchers 
(including one female), and a research scientist. Faculty support for the participating faculty was 
also provided to Dr. Ken Flurchick, and others as part of the project support. 
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D. Computational and Visualization Hardware / Software | 

Computational and visualization hardware/software resources are critical components of 
computational modeling research. The project funding was instrumental in supporting the 
associated software and system upgrades during the project period benefiting the research and 
educational needs of the students, faculty and the research focus. In addition, the project funding 
was instrumental in the award of a NSF major research instrumentation award to acquire a multi- 
processor SUN Blade system that is currently under installation. The project funding supported 
the hardware upgrades to the visualization system, new computer hardware and peripherals, 
software licensing for engineering and visualization analysis software needs of the computational 
science and engineering graduate program. Some of this software includes ANSYS for finite 
element analysis, Accelerys and Materials Studio for molecular modeling, COMSOL for multi- 
physics computational modeling. In addition, the project activities also were instrumental in 
enabling the analysis capabilities through computational modeling codes such as LAAMPS, 
GROMACS, etc., that were not regularly employed. The present project efforts have a 
significant outreach for the research and education in the areas of computational mechanics and 
materials and enabled the recruitment of under-represented minorities in these critical technical 
areas. Recently, in August 2014, part of the project ftmds was utilized to support the purchase of 
a Cray XC-30 system that would not have been possible without the ONR funding. 
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